Читаем 120 практических задач полностью

– Кодировщик (Encoder): Преобразует входной текст на исходном языке во внутреннее представление, называемое контекстным вектором или скрытым состоянием.

– Декодер (Decoder): Принимает контекстный вектор и генерирует выходной текст на целевом языке.

Пример архитектуры нейронной сети для машинного перевода:

```python

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, LSTM, Embedding, Dense

# Пример архитектуры нейронной сети для машинного перевода

# Параметры модели

latent_dim = 256 # размерность скрытого состояния LSTM

# Входные данные

encoder_inputs = Input(shape=(None,))

decoder_inputs = Input(shape=(None,))

# Энкодер

encoder_embedding = Embedding(input_dim=num_encoder_tokens, output_dim=latent_dim)(encoder_inputs)

encoder_lstm = LSTM(latent_dim, return_state=True)

encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)

encoder_states = [state_h, state_c]

# Декодер

decoder_embedding = Embedding(input_dim=num_decoder_tokens, output_dim=latent_dim)(decoder_inputs)

decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)

decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

# Модель для обучения

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Компиляция модели

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Подготовка данных: В этом примере предполагается, что данные уже предварительно обработаны и представлены в виде числовых последовательностей (индексов слов или символов).

2. Кодировщик (Encoder): Входные данные на исходном языке проходят через слой встраивания (`Embedding`), который преобразует каждое слово в вектор. LSTM слой кодировщика обрабатывает последовательность входных векторов и возвращает скрытое состояние `encoder_states`.

3. Декодер (Decoder): Входные данные на целевом языке также проходят через слой встраивания. LSTM слой декодера получает на вход векторы слов и скрытое состояние от кодировщика. `decoder_lstm` генерирует последовательность выходных векторов, которые затем подаются на полносвязный слой `decoder_dense` для получения вероятностного распределения над всеми словами в словаре целевого языка.

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функцией потерь `categorical_crossentropy`, если используется one-hot кодирование целевых данных. Можно также использовать другие функции потерь в зависимости от специфики задачи.

5. Использование модели: После обучения модель можно использовать для перевода текста на новых данных, подавая входные последовательности на кодировщик и прогнозируя выходные последовательности с помощью декодера.

Преимущества использования нейронных сетей для машинного перевода

– Учет контекста: LSTM способны учитывать долгосрочные зависимости и контекст в тексте, что особенно важно для перевода.

– Обработка последовательных данных: Нейронные сети LSTM могут обрабатывать входные и выходные данные переменной длины.

– Применение в реальном времени: Модели машинного перевода на основе LSTM могут быть настроены для работы в реальном времени, обрабатывая запросы на перевод в онлайн-сервисах.

Этот подход является одним из основных в современных системах машинного перевода и позволяет достигать высокой точности перевода при правильной настройке и обучении модели.

<p><strong>17. Классификация медицинских изображений с использованием CNN</strong></p>

– Задача: Диагностика заболеваний по снимкам.

Классификация медицинских изображений с использованием сверточных нейронных сетей (CNN) играет ключевую роль в диагностике заболеваний на основе медицинских изображений, таких как рентгеновские снимки, снимки компьютерной томографии (CT), магнитно-резонансные изображения (MRI) и другие.

Построение CNN для классификации медицинских изображений

1. Подготовка данных

Процесс подготовки данных для классификации медицинских изображений включает:

– Загрузку и предобработку изображений, включая масштабирование и нормализацию.

– Разделение данных на обучающую, валидационную и тестовую выборки.

– Может потребоваться учет особенностей медицинских данных, таких как аугментация изображений для увеличения разнообразия данных.

2. Построение модели CNN

Пример базовой архитектуры CNN для классификации медицинских изображений может включать следующие шаги:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

# Параметры модели

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука