Читаем 120 практических задач полностью

# Сборка модели GAN

generator = build_generator

discriminator = build_discriminator

discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

gan_input = layers.Input(shape=(100,))

generated_image = generator(gan_input)

discriminator.trainable = False

gan_output = discriminator(generated_image)

gan = tf.keras.Model(gan_input, gan_output)

gan.compile(optimizer='adam', loss='binary_crossentropy')

```

3. Обучение модели

```python

import tensorflow as tf

# Гиперпараметры

epochs = 10000

batch_size = 64

sample_interval = 200

latent_dim = 100

# Генерация меток

real_labels = np.ones((batch_size, 1))

fake_labels = np.zeros((batch_size, 1))

for epoch in range(epochs):

# Обучение дискриминатора

idx = np.random.randint(0, train_images.shape[0], batch_size)

real_images = train_images[idx]

noise = np.random.normal(0, 1, (batch_size, latent_dim))

fake_images = generator.predict(noise)

d_loss_real = discriminator.train_on_batch(real_images, real_labels)

d_loss_fake = discriminator.train_on_batch(fake_images, fake_labels)

d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

# Обучение генератора

noise = np.random.normal(0, 1, (batch_size, latent_dim))

g_loss = gan.train_on_batch(noise, real_labels)

# Печать прогресса

if epoch % sample_interval == 0:

print(f"{epoch} [D loss: {d_loss[0]}, acc.: {100*d_loss[1]}] [G loss: {g_loss}]")

sample_images(generator)

def sample_images(generator, image_grid_rows=4, image_grid_columns=4):

noise = np.random.normal(0, 1, (image_grid_rows * image_grid_columns, latent_dim))

gen_images = generator.predict(noise)

gen_images = 0.5 * gen_images + 0.5

fig, axs = plt.subplots(image_grid_rows, image_grid_columns, figsize=(10, 10))

cnt = 0

for i in range(image_grid_rows):

for j in range(image_grid_columns):

axs[i,j].imshow(gen_images[cnt])

axs[i,j].axis('off')

cnt += 1

plt.show

```

4. Генерация изображений

После завершения обучения, можно использовать генератор для создания новых изображений ландшафтов.

```python

noise = np.random.normal(0, 1, (1, latent_dim))

generated_image = generator.predict(noise)

generated_image = 0.5 * generated_image + 0.5 # Возвращение значений к диапазону [0, 1]

plt.imshow(generated_image[0])

plt.axis('off')

plt.show

```

Этот код даст вам базовую генеративно-состязательную сеть для создания реалистичных изображений ландшафтов. Для улучшения качества изображений можно рассмотреть использование улучшенных архитектур GAN, таких как DCGAN или ProGAN.

<p><strong>31. Создание модели для прогнозирования спортивных результатов</strong></p>

– Задача: Прогнозирование исходов спортивных событий.

Прогнозирование исходов спортивных событий является одной из самых популярных и сложных задач в области аналитики данных и машинного обучения. Для создания такой модели необходимо учитывать множество факторов, начиная от индивидуальных характеристик игроков и команд, заканчивая погодными условиями и историей предыдущих матчей. Основные этапы разработки модели включают сбор данных, предобработку, выбор и обучение модели, а также оценку её эффективности.

1. Сбор данных

Для начала требуется собрать подробные данные о спортивных событиях. Это могут быть данные о предыдущих матчах, статистика команд и игроков, травмы, погодные условия, и другие релевантные параметры. Источники данных могут включать спортивные API, базы данных, и сайты, такие как ESPN, Opta, и другие.

2. Предобработка данных

Данные часто бывают разнородными и содержат много шума, поэтому их нужно очистить и подготовить:

– Очистка данных: удаление или замена пропущенных значений, исправление ошибок в данных.

– Форматирование данных: преобразование данных в формат, пригодный для анализа (например, числовые значения, категориальные переменные).

– Фичевая инженерия: создание новых признаков на основе имеющихся данных (например, среднее количество голов за матч, процент побед на домашнем стадионе).

3. Выбор модели

Для прогнозирования спортивных результатов можно использовать несколько типов моделей машинного обучения, таких как:

– Логистическая регрессия: подходит для бинарной классификации (победа/поражение).

– Решающие деревья и случайные леса: могут учитывать сложные зависимости между признаками.

– Градиентный бустинг (XGBoost, LightGBM): мощные методы для работы с табличными данными.

– Нейронные сети: особенно полезны, если данные содержат сложные и нелинейные зависимости.

4. Обучение модели

После выбора модели необходимо обучить её на исторических данных. Для этого данные обычно делят на тренировочный и тестовый наборы. Модель обучается на тренировочных данных и оценивается на тестовых.

5. Оценка модели

Для оценки качества модели используют различные метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-оценка. Также можно использовать специфические метрики для задач с несбалансированными классами, например, ROC-AUC.

Пример реализации на Python

Рассмотрим пример реализации модели на Python с использованием библиотеки scikit-learn.

```python

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука