Распространено заблуждение, будто переполнение буфера в куче не так опасно, как буфера в стеке. Это совершенно неправильно. Большинство реализаций кучи страдают тем же фундаментальным пороком, что и стек, – пользовательские и управляющие данные хранятся вместе. Часто можно заставить менеджер кучи поместить четыре указанных противником байта по выбранному им же адресу. Детали атаки на кучу довольно сложны. Недавно Matthew «shok» Conover и Oded Horovitz подготовили очень ясную презентацию на эту тему под названием «Re–liable Windows Heap Exploits» («Надежный эксплойт переполнения кучи в Win–dows»), которую можно найти на странице http://cansecwest.com/csw04/csw04–Oded+Connover.ppt. Даже если сам менеджер кучи не поддается взломщику, в соседних участках памяти могут находиться указатели на функции или на переменные, в которые записывается информация. Когда–то эксплуатация переполнений кучи считалась экзотическим и трудным делом, теперь же это одна из самых распространенных атакуемых ошибок.
Греховность C/C++
В программах на языках C/C++ есть масса способов переполнить буфер. Вот строки, породившие finger–червя Морриса:
char buf[20] ;
gets (buf) ;
Не существует никакого способа вызвать gets для чтения из стандартного ввода без риска переполнить буфер. Используйте вместо этого fgets. Наверное, второй по популярности способ вызвать переполнение – это воспользоваться функцией strcpy (см. предыдущий пример). А вот как еще можно напроситься на неприятности:
char buf[20];
char prefix[] = "http://";
strcpy(buf, prefix);
strncat(buf, path, sizeof(buf));
Что здесь не так? Проблема в неудачном интерфейсе функции strncat. Ей нужно указать, сколько символов свободно в буфере, а не общую длину буфера. Вот еще один распространенный код, приводящий к переполнению:
char buf[MAX_PATH];
sprintf(buf, "%s – %d\n", path, errno);
Если не считать нескольких граничных случаев, функцию sprintf почти невозможно использовать безопасно. Для Microsoft Windows было выпущено извещение о критической ошибке, связанной с применением sprintf для отладочного протоколирования. Подробности см. в бюллетене MS04–011 (точная ссылка приведена в разделе «Другие ресурсы»).
А вот еще пример:
char buf [ 32] ;
strncpy(buf, data, strlen(data));
Что неверно? В последнем аргументе передана длина входного буфера, а не размер целевого буфера!
Еще один способ столкнуться с проблемой – по ошибке считать байты вместо символов. Если вы работаете с кодировкой ASCII, то между ними нет разницы, но в кодировке Unicode один символ представляется двумя байтами. Вот пример:
_snwprintf(wbuf, sizeof(wbuf), «%s\n», input);
Следующее переполнение несколько интереснее:
bool CopyStructs(InputFile* pInFile, unsigned long count)
{
unsigned long i;
m_pStructs = new Structs[count];
for(i = 0; i < count; i++)
{
if(!ReadFromFile(pInFile, &(m_pStructs[i])))
break;
}
}
Как здесь может возникнуть ошибка? Оператор new[] в языке С++ делает примерно то же, что такой код:
ptr = malloc(sizeof(type) * count);
Если значение count может поступать от пользователя, то нетрудно задать его так, чтобы при умножении возникло переполнение. Тогда будет выделен буфер гораздо меньшего размера, чем необходимо, и противник сможет его переполнить. В компиляторе С++, который будет поставляться в составе Microsoft Visual Studio 2005, реализована внутренняя проверка для недопущения такого рода ошибок. Аналогичная проблема может возникнуть во многих реализациях функции calloc, которая выполняет примерно такую же операцию. В этом и состоит коварство многих ошибок, связанных с переполнением целых чисел: опасно не само это переполнение, а вызванное им переполнение буфера. Но подробнее об этом мы расскажем в грехе 3.
Вот как еще может возникать переполнение буфера:
#define MAX_BUF 256
void BadCode(char* input)
{
short len;
char buf[MAX_BUF];
len = strlen(input);
// конечно, мы можем использовать strcpy безопасно
if(len < MAX_BUF)
strcpy(buf, input);
}