Читаем 200 занимательных логических задач полностью

15. В одном древнем государстве количество денег приравнивалось к длине серебряного бруска. Работник починил дом заказчика за 15 дней, причем в конце каждого дня он требовал по одному дециметру серебра. Хозяин дома, у которого был брусок серебра длиной 15 дециметров, расплатился с работником, разрезав этот брусок всего четыре раза. Как он это сделал?

16. В нумизматической коллекции есть 24 монеты, которые внешне ничем не отличаются друг от друга. Одна из монет золотая и весит больше, чем другие. Как с помощью трех взвешиваний на чашечных весах найти золотую монету?

17. В вашем шкафу лежит двадцать два синих носка и тридцать пять черных носков. Вам надо в полной темноте взять из шкафа пару носков. Сколько носков нужно взять, чтобы с гарантией получить совпадающую пару?

18. Старинным часам требуется тридцать секунд, чтобы пробить шесть часов. За сколько секунд часы пробьют двенадцать часов?

19. В пруду растет один лист лилии. Каждый день число листьев удваивается. На какой день пруд будет покрыт листьями лилии наполовину, если известно, что полностью он будет покрыт ими через 100 дней?

20. Полторы курицы несут полтора яйца в полтора дня. Как много нужно куриц, несущихся в полтора раза лучше, чтобы они снесли полтора десятка яиц за полторы декады?

21. Пассажирский лифт поднимается на пятый этаж в два раза быстрее, чем грузовой лифт на третий этаж. Какой лифт придет раньше: грузовой на третий этаж или пассажирский на пятый, если они начали движение с первого этажа одновременно?

22. Летит гусь. Навстречу ему – стая гусей. «Здравствуйте, 100 гусей», – говорит он им. Они отвечают: «Нас не 100 гусей; вот если бы нас было столько, сколько сейчас, да еще столько, да еще пол-столько и четверть-столько, да еще ты, вот тогда нас было бы 100 гусей». Сколько гусей летит в стае?

23. Из 10 спичек построено изображение дома. Как переложить две спички таким образом, чтобы дом повернулся другой стороной?

24. В зоопарке живут четвероногие звери и двуногие птицы. В зоопарке имеется тридцать голов и сто ног. Сколько зверей и сколько птиц живет в зоопарке?

25. Докажем, что 3 = 7. Известно, что если над каждой частью равенства проделать одну и ту же операцию, то равенство останется неизменным. Отнимем у каждой части нашего равенства по пять: 3–5 = 7–5. Получится: – 2 = 2. Теперь возведем каждую часть равенства в квадрат: (– 2)2 = 22. Получится: 4 = 4, следовательно, 3 = 7. Найдите ошибку в этом рассуждении.

26. Можно ли, раздевшись, лежать на голой каменистой поверхности, как на мягкой перине?

27. У арфы их четыре, у домбры шесть, и у гитары тоже шесть. О чем идет речь? (Задача-шутка).

28. Пусть а = b + c, тогда c = a – b. Подставляя эти выражения в равенство: a c = a c, получим: a (a – b) = (a – b) (b + c) или a2 – a b = a b – b2 + a c – b c. После переноса а с в левую часть равенства получим: a2 – a b – а с = a b – b2 – b c. Вынесем за скобки общий множитель в каждой части равенства: а (а – b – c) = b (a – b – c). Разделив обе части полученного равенства на (а – b – c), получим, что а = b и, одновременно, а = b + c (см. начало). Найдите ошибку в этом рассуждении.

29. Представьте себе кусок шахматной доски размером 5 x 5 клеток, т. е. состоящий из 25 клеток. Далее представьте, что на каждой клетке находится по одному жуку. Теперь предположим, что каждый жук переполз на соседнюю по горизонтали или по вертикали клетку (этого куска) доски. Останутся ли при этом пустые клетки?

30. Как известно, в любом атоме есть ядро, размеры которого меньше размеров самого атома. Если размер атомного ядра равен 10-12 см, а размер всего атома равен 10-6 см, следовательно, ядро по размеру меньше самого атома в 2 раза, ведь 12: 6 = 2. Верно ли это утверждение? Если нет, то во сколько раз атомное ядро меньше атома?

31. Собеседник просит вас задумать четное число. Далее он предлагает вам утроить его, затем взять половину полученного числа и опять утроить ее. После этого он просит поделить получившееся число на 9 и сообщить ему результат. После этого он называет число, которое было вами задумано. Как он это делает?

32. Каким образом возможно носить воду в решете, разумеется, ничем не затыкая его отверстий?

33. Из двух городов, находящихся на расстоянии 300 км один от другого одновременно выехали два велосипедиста навстречу друг другу со скоростью 50 км в час. Вместе с одним из велосипедистов из города вылетела муха, пролетающая в час 100 км. Она опередила первого велосипедиста, полетев навстречу второму. Встретив его, она сразу же полетела назад к первому. Повстречав его, опять полетела навстречу второму. Так она продолжала свои полеты до тех пор, пока велосипедисты не встретились. Сколько километров пролетела муха?

34. Диаметр Солнца больше диаметра Земли в 110 раз. Следовательно, и объем Солнца больше объема Земли приблизительно в 110 раз. Верно ли это утверждение? Если нет, то во сколько раз объем Солнца больше объема Земли?

Перейти на страницу:

Похожие книги