Читаем 2000 № 06 полностью

Казалось бы, сложные молекулы, свободно дрейфующие в открытом космосе, неминуемо должны быть разрушены ультрафиолетовым излучением ближайших звезд. Однако пыль гигантских молекулярных облаков служит им защитным экраном, рассеивая и поглощая лучи ультрафиолета. Эффективность такой экранировки определяется как плотностью пылевых частиц, так и длиной волны излучения. Зависимость поглощающей способности вещества от длины волны света помогает астрономам исследовать молекулярные облака: практически непроницаемые для ультрафиолета, они легко пропускают свет в инфракрасном и радиодиапазонах.

Газопылевые облака привлекают астрономов в первую очередь потому, что именно там зарождаются звезды. Когда газ в одном из облаков начинает концентрироваться, он увлекает за собой и окружающие частицы пыли, в результате чего рождающаяся звезда оказывается «обернутой» в пылевой кокон. Поскольку этот газопылевой шар постоянно вращается вокруг своей оси, то по мере сжатия ему приходится крутиться все быстрее и быстрее в силу закона сохранения момента импульса. Вращение приводит к тому, что пылевая оболочка постепенно вытягивается и образует толстый диск, напоминающий огромный пирог, в центре которого в конце концов и формируется новая звезда. Типичный пылевой диск имеет диаметр порядка 1000 астрономических единиц (а.е.) и толщину примерно несколько сотен а.е. (одна астрономическая единица равна расстоянию от Земли до Солнца, приблизительно 150 миллионам километров). С помощью космического телескопа «Хаббл» были получены впечатляющие изображения пылевых дисков в виде темных силуэтов на фоне ярко пылающего газа.

Согласно теории, лишь часть вещества, собранного изначально в газопылевой кокон, остается внутри звезды либо превращается в движущиеся вокруг нее планеты.

Большая же часть диффузной материи выбрасывается наружу под действием сил, природа которых еще до конца не выяснена. Потоки газа движутся в противоположных направлениях вдоль оси вращения гигантского пылевого диска, унося с собою огромное количество пыли, окружающей юную звезду. Так лучи новой звезды впервые устремляются в удаленные уголки космоса. Однако этот свет распространяется лишь в двух направлениях перпендикулярно диску. В плоскости же диска на пути света по-прежнему остается толстый слой пыли. Но даже если пыль делает звезду невидимой с Земли, астрономы все равно узнают о ее рождении по ярко освещенным облакам — так называемым отражательным туманностям, — которые образуются с двух сторон от пылевого диска за счет рассеяния части излучаемого звездой света на частицах пыли, уносимых потоком материи.

Переменная туманность Хаббла — иллюстрация того, как, вероятно, зарождалась Солнечная система.

Поскольку плотный газопылевой диск опоясывает молодую звезду вдоль экватора, она свободно излучает свет только в области полюсов. Оттуда же извергаются мощные потоки пыли и газа, рассеивающие большинство фотонов вперед — вдоль оси вращения диска. Лишь небольшая часть излучения достигает Земли, откуда эта гигантская «звездная колыбель», похожая на огромные песочные часы, выглядит как светлое пятнышко треугольной формы.

ЦИРКУЛЯРНО ПОЛЯРИЗОВАННЫЙ ЗВЕЗДНЫЙ СВЕТ

Определить точное местоположение молодой звезды, имеющей отражательную туманность, нетрудно — достаточно измерить поляризацию излучения в различных точках туманности и ее окрестностях. Хотя свет, первоначально испускаемый звездой, неполяризован, после рассеяния на частицах пыли он приобретает линейную поляризацию, плоскость которой легко определить с помощью поляриметра (см. «Наука и жизнь» № 7, 1999 г.). Результаты измерений наносят на изображение туманности в виде небольших штрихов, ориентированных вдоль направления поляризации излучения в соответствующем участке пространства. Если нанести много таких штрихов, они расположатся по концентрическим окружностям, в центре которых и «прячется» молодая звезда.

Конечно, в реальности все несколько сложнее, поскольку на ориентацию плоскости поляризации могут влиять различные факторы. Например, внутри одной туманности может находиться несколько источников излучения, а на пути к Земле свет может встретить скопления удлиненных частиц пыли, которые изменят его поляризацию. Чтобы учесть все подобные факторы, приходится строить сложные теоретические модели и применять компьютерное моделирование.

Перейти на страницу:

Все книги серии Наука и жизнь, 2000

Похожие книги

«Если», 2000 № 11
«Если», 2000 № 11

ФАНТАСТИКАЕжемесячный журналСодержание:Аллен Стил. САМСОН И ДАЛИЛА, рассказКир Булычёв. ПОКОЛЕНИЕ БРЭДБЕРИ, предисловие к рассказуМаргарет Сент-Клер. ДРУГАЯ ЖИЗНЬ, рассказСергей Лукьяненко. ПЕРЕГОВОРЩИКИ, рассказВидеодром*Герой экрана--- Дмитрий Байкалов. ИГРА НА ГРАНИ, статья*Рецензии*Хит сезона--- Ярослав Водяной. ПОРТРЕТ «НЕВИДИМКИ», статья*Внимание, мотор!--- Новости со съемочной площадкиФриц Лейбер. ГРЕШНИКИ, романЛитературный портрет*Вл. Гаков. ТЕАТР НА ПОДМОСТКАХ ВСЕЛЕННОЙ, статьяКим Ньюман. ВЕЛИКАЯ ЗАПАДНАЯ, рассказМайкл Суэнвик. ДРЕВНИЕ МЕХАНИЗМЫ, рассказРозмари Эджхилл. НАКОНЕЦ-ТО НАСТОЯЩИЙ ВРАГ! рассказКонсилиумЭдуард Геворкян. Владимир Борисов: «ЗА КАЖДЫМ МИФОМ ТАИТСЯ ДОЛЯ РЕАЛЬНОСТИ» (диалоги о фантастике)Павел Амнуэль. ВРЕМЯ СЛОМАННЫХ ВЕЛОСИПЕДОВ, статьяЕвгений Лукин. С ПРИВЕТОМ ИЗ 80-Х, эссеАлександр Шалганов. ПЛЯСКИ НА ПЕПЕЛИЩЕ, эссеРецензииКрупный план*Андрей Синицын. В ПОИСКАХ СВОБОДЫ, статья2100: история будущего*Лев Вершинин. НЕ БУДУ МОЛЧАТЬ! рассказФантариумКурсорPersonaliaОбложка И. Тарачкова к повести Фрица Лейбера «Грешники».Иллюстрации О. Васильева, А. Жабинского, И. Тарачкова, С. Шехова, А. Балдин, А. Филиппова. 

МАЙКЛ СУЭНВИК , Павел (Песах) Рафаэлович Амнуэль , Розмари Эджхилл , Сергей Васильевич Лукьяненко , Эдуард Вачаганович Геворкян

Фантастика / Журналы, газеты / Научная Фантастика