В середине 90-х годов Стюарт Кларк и его коллеги из университета в Хертфордшире (Великобритания), занимавшиеся компьютерным моделированием рассеяния света в отражательных туманностях, решили проверить экспериментально некоторые результаты своих вычислений. Проведенный ими теоретический расчет показывал, что в толстом слое пыли вблизи звезды свет может рассеиваться не один, а несколько раз, в результате чего небольшая часть фотонов должна приобрести сначала линейную, а потом циркулярную поляризацию. Эксперимент по обнаружению циркулярно поляризованного излучения решено было провести на телескопе Англо-австралийской обсерватории в Новом Южном Уэльсе (Австралия) с применением инфракрасной камеры и специально сконструированного циркулярного поляриметра. Стоит отметить, что в то время исследователи еще ничего не знали ни о Мерчисонском метеорите, ни о гипотезе влияния поляризованного света на формирование жизни на Земле.
Измерения начались в мае 1995 года. Несмотря на неблагоприятные погодные условия, ученым удалось исследовать излучение GSS30 — молодой звезды, окруженной облаком пыли. Оказалось, что примерно два процента света, рассеиваемого отражательной туманностью, имеет циркулярную поляризацию. Это совпадало с тем, что предсказывал компьютерный расчет. Регистрируемое излучение содержало в себе как правую, так и левую компоненту циркулярно поляризованного света, однако, к удивлению исследователей, эти компоненты были пространственно разделены и, казалось, исходили из разных участков туманности.
При исследовании Кассиопеи и ряда других туманностей Кларк и его коллеги либо вовсе не обнаружили циркулярно поляризованного света, либо его доля в общем излучении по-прежнему не превышала одного-двух процентов. Однако в созвездии Ориона ученых ждал настоящий сюрприз!
Туманность Ориона — один из наиболее известных объектов на ночном небе. Это ближайшее к Земле место, где рождаются звезды-гиганты. По сути, туманность Ориона — это маленькая замочная скважина, позволяющая астрономам с помощью инфракрасного излучения наблюдать за тайной жизнью огромного молекулярного облака. Коллега Кларка Антонио Крисостому исследовал с помощью поляриметра окрестность молодой звезды IRc2 и обнаружил, что в двух отдельных участках ее отражательной туманности доля циркулярно поляризованного излучения достигает почти 20 процентов! Такой результат просто ошеломил ученых. Однако вскоре похожие значения были получены еще одним коллегой Кларка, Франсуа Менардом из университета в Гренобле, исследовавшим участок неба NGC6334V, где также рождаются звезды.
Неожиданные экспериментальные результаты требовали тщательной проверки теоретической модели и компьютерного расчета. Однако повторные вычисления убедительно показали, что при рассеянии света на частицах сферической формы доля циркулярно поляризованного излучения должна быть значительно ниже той, что наблюдается в эксперименте. Так в чем же дело?
Исследователи пребывали в некотором замешательстве до тех пор, пока Алан Маккол не выдвинул одну, в общем-то не новую, идею: а что если свет рассеивается не сферическими, а слегка удлиненными частицами пыли, ориентированными вблизи звезды ее магнитным полем? При такой конфигурации рассеивающей среды доля циркулярно поляризованного света действительно будет большой, даже если перед этим свет не обладал линейной поляризацией.
1. Свет звезды рассеивается на частицах пылевого облака и приобретает линейную поляризацию. В результате сложения волн, приходящих под прямым углом, образуется циркулярно поляризованный свет.
2. После рассеяния неполяризованного света звезды удлиненными частицами пыли, ориентированными в ее магнитном поле, сразу возникает свет с циркулярной поляризацией.