Эти обстоятельства и способствуют тому, что иногда в сознании некоторых математиков
Так, известно, что Платон настолько абсолютизировал понятия математики, что превращал их в самостоятельные трансцендентные «идеи», вечные идеальные формы, знание о которых душа приобретает во время пребывания в потустороннем мире[24]
. В этом случае основные понятия математики оказываются врожденными, не зависящими как от личного, так и от коллективного опыта людей, «открываются», а не «изобретаются». Последователи Платона абсолютизируют относительную независимость математического знания от эмпирического содержания. Объективность содержания понятий истолковывается в том смысле, что и они сами, а не только их прообразы существуют вне и независимо от сознания.Математическое знание действительно обладает известной независимостью от эмпирического опыта, но эта независимость не абсолютна, она имеет свои границы[25]
. Математика не является теорией, выведенной из априорного основания. Хотя ее основные понятия и невыводимы непосредственно из эмпирического опыта, а являются результатом творческой, конструктивной деятельности мышления, но мотивы и цели этой деятельности детерминированы факторами, находящимися в объективном мире.Для идеалистического рационализма математика была знанием автономным, независимым от эмпирии и в то же время имевшим объективное значение. При этом полагалось, что применимость математики к наукам о природе свидетельствует о гармонии разума и бытия. Новые открытия в математике заставили сторонников рационализма отказаться от первоначальных упрощенных представлений об этой гармонии и искать возможности для установления более сложных ее форм. Когда было обнаружено, что относительно некоторой «математической реальности» можно построить несколько непротиворечивых, но несовместимых теорий, стало ясно, что в данном случае выбор между ними нельзя сделать на основе «разума». Тогда пришли к выводу, что этот вопрос должен решаться в «опыте».
Если в платонизме абсолютизировалась относительная самостоятельность понятийного компонента математического познания, то в кантовской философии математики абсолютизировалась сама «математическая деятельность». Так как «мы a priori, — писал И. Кант, — познаем о вещах лишь то, что вложено в них нами самими», — объекты, познаваемые нами посредством «априорного созерцания», суть продукты нашего собственного воображения[26]
. Он считал, что в математике познание происходит путем «конструирования понятий».То, что Кант стремился показать единство образного и дискурсивного (понятийного) моментов в математическом познании, подчеркивало важную роль в нем творческой, конструктивной деятельности субъекта, имело положительное значение. Однако при этом он истолковывал неконструктивные компоненты математического знания не как отражение внешнего мира, а как данные a priori, т. е. мистически. Архаичным выглядит и его стремление уложить все многообразное содержание математики в рамки «евклидовой интуиции» пространства, ограниченность которой обнаружилась уже с открытием неевклидовых геометрий. Но это было позже. А тогда, как справедливо заметил М. Бунге, «из всего солидного вклада Канта (в философию математики. —