Мендель заслужил благодарность пришедших ему на смену генетиков за точную регистрацию характерных признаков и последующее их проявление из поколения в поколение. Исследователь обнаружил относительно простые, повторяющиеся численные пропорции, которые дали ученым ключ к истинному пониманию механизма наследования. Экспериментальная генетика XX века доказала, что правила Менделя применимы ко всем многоклеточным организмам: ко мхам и цветущим растениям, к насекомым, моллюскам, крабам, амфибиям, птицам и млекопитающим, включая человека.
Однако законы Менделя ждала судьба многих других великих открытий, опередивших свое время. Их значение не было оценено по заслугам, и они ушли в небытие. А после того, как в 1884 году Мендель умер, никто их не вспоминал вплоть до начала следующего века.
Повторное открытие законов Менделя было сделано около 1900 года. Тогда научный мир уже был готов принять новую теорию и оценить ее значимость, ведь к тому времени были получены корректные сведения о строении клетки и ее ядра. О митотическом делении клеток и хромосомах — странных нитевидных структурах, появляющихся при митозе, — было известно уже в начале 1870-х годов. Наблюдая расхождение, блуждание и слияние хромосом на разных фазах клеточного деления, исследователи поняли, что хромосомы при митозе не появляются, а утолщаются и поэтому становятся хорошо видны. Мнение о том, что хромосомы — носители наследственной информации, впервые было четко и обоснованно высказано в 1903–1904 годах.
Словом, научная почва была хорошо подготовлена, и когда в 1910 году американский зоолог Томас Морган начал свои исследования, они в конечном счете привели его в 1933 году к Нобелевской премии «за открытие роли хромосомы в наследственности».
Успех Моргана объясняется несколькими причинами. Во-первых, он использовал сразу два, казалось бы, непересекающихся метода: статистически-генетический, принятый Менделем, и микроскопический. Морган со своей командой не только наблюдал за тем, как и какие признаки передаются из поколения в поколение, но параллельно старался фиксировать, какие микроскопические процессы в клетках и хромосомах приводят к тем или иным результатам скрещивания.
Другая причина успеха Моргана связана с удачным, прямо-таки гениальным выбором объекта для экспериментов. С самого начала Морган работал с мухой дрозофилой обыкновенной (
Так же как и учение Менделя, открытие Моргана можно тезисно представить в виде правил или законов. Их четыре: правило комбинации, правило ограниченного числа комбинационных групп, правило пересечения, а также правило линейного расположения генов в хромосомах. Они принципиальным образом дополняют правила Менделя. Все они неразрывно связаны и образуют вместе тесное биологическое единство.
Правило сочетания Моргана, согласно которому некоторые наследственные признаки связаны друг с другом, в значительной степени ограничивает второе правило Менделя, по которому в новом поколении гены могут сочетаться независимо. Правило сочетания дополняется правилом ограниченного числа комбинационных групп, соответствующих количеству хромосом. С другой стороны, правило сочетания ограничено странным явлением, которое Морган назвал «кроссинговером», или обменом генов: Морган представлял его как реальный обмен частями между хромосомами. Эта теория встретила много возражений, однако была доказана посредством прямых микроскопических наблюдений.
Правило линейного расположения генов также казалось вначале фантастикой. Утверждение Моргана о том, что участки, отвечающие за различные наследственные признаки, расположены на хромосоме словно бусины, вызвала волну скепсиса. Дело в том, что Морган пришел к таким сенсационным выводам путем статистического анализа результатов скрещивания дрозофил, а не с помощью прямого исследования хромосом. Но более поздние работы полностью подтвердили правоту ученого.