Читаем 3a. Излучение. Волны. Кванты полностью

Для наших целей надо вообразить немного идеализирован­ный опыт, когда пули не дают осколков и остаются целыми. Тогда мы обнаружим, что пули всегда попадают в детектор порциями: если уж мы что-то нащупали в детекторе, то это всегда целая пуля, а не половина и не четвертушка. Даже когда скорость стрельбы становится очень малой, все равно в детек­торе за определенное время либо ничего не накапливается, либо обнаруживается целое — непременно целое — число пуль. Стало быть, размер порции не зависит от скорости стрельбы. Мы говорим поэтому: «Пули всегда приходят равными порция­ми». С помощью нашего детектора мы измеряем как раз вероят­ность прихода очередных порций как функцию х. Результат таких измерений (мы, правда, пока еще не провели такого эксперимента и сейчас просто воображаем, каким будет резуль­тат) изображен на графике фиг. 37.1,в. Вероятность в нем от­ложена вправо, а х — по вертикали, согласуясь с движением детектора. Вероятность обозначена P12,, чтобы подчеркнуть, что пули могли проходить и сквозь отверстие 1, и сквозь отверстие 2. Вы, конечно, не удивитесь, что вероятность P12 близ середины графика велика, а по краям мала. Вас может, однако, смутить, почему наибольшее значение Р12 оказа­лось при х = 0. Это легко понять, если один раз про­делать опыт, заткнув дырку 2, а другой раз — дырку 1. В первом случае пули смогут проникать лишь сквозь дырку 1 и получится кривая P1(см. фиг. 37.1,б). Здесь, как и следо­вало ожидать, максимум P1 приходится на то х, которое лежит по прямой от пулемета через дырку 1. А если заткнуть дырку 1, то получится симметричная кривая Р2распре­деление вероятностей для пуль, проскочивших сквозь отверс­тие 2. Сравнив части б и в на фиг. 37.1, мы получаем важный результат

(37.1)

т. е. вероятности просто складываются. Действие двух дырок складывается из действий каждой дырки в отдельности. Этот результат наблюдений мы назовем отсутствием интерференции по причине, о которой вы узнаете после. На этом мы покончим с пулями.

Они приходят порциями, и вероятность их попадания скла­дывается без интерференции.

§ 3. Опыт с волнами

Теперь проведем опыт с волнами на воде. Прибор показан схематически на фиг. 37.2. Это мелкое корытце, полное воды. Предмет, обозначенный как «источник волн», колеблясь при по­мощи моторчика вверх и вниз, вызывает круговые волны. Справа от источника опять стоит перегородка с двумя отверстиями, а дальше — вторая стенка, которая для простоты сде­лана поглощающей (чтобы волны не отражались): насыпана песчаная отмель. Перед отмелью помещается детектор; его опять, как и раньше, можно передвигать по оси х. Теперь де­тектор — это устройство, измеряющее «интенсивность» вол­нового движения. Представьте себе приспособление, измеряю­щее высоту волн. Если его шкалу откалибровать пропорцио­нально квадрату высоты, то отсчеты шкалы смогут давать интенсивность волны. Детектор, таким образом, будет опре­делять энергию, переносимую волной, или, точнее, долю энер­гии, доставляемую детектору.

Первое, в чем можно убедиться при помощи такого волно­вого аппарата,— это что интенсивность может быть любой ве­личины. Когда источник движется еле-еле, то и детектор пока­зывает тоже чуть заметное движение. Если же движение возрастет, то и в детекторе интенсивность подскочит. Интенсив­ность волны может быть какой угодно. Мы уже не скажем, что в интенсивности есть какая-то «порционность».

Заставим теперь волновой источник работать стабильно, а сами начнем измерять интенсивность волн при различных значениях х. Мы получим интересную кривую (кривая I12 на фиг. 37.2,в).

Но мы уже видели, откуда могут возникать такие картин­ки,— это было тогда, когда мы изучали интерференцию элек­трических волн. И здесь можно видеть, как первоначальная волна дифрагирует на отверстиях, как от каждой щели расходят­ся круги волн. Если на время одну щель прикрыть и измерить распределение интенсивности у поглотителя, то кривые вый­дут довольно простыми (см. фиг. 37.2,б)

Перейти на страницу:

Похожие книги