Читаем 3a. Излучение. Волны. Кванты полностью

Фиг. 37.2. Опыт с волнами на воде.

Кривая I1 — это интенсивность волн от щели 1 (когда ее измеряли, щель 2 была закрыта), а кривая I2 — интенсивность волн от щели 2 (при закрытой щели 1).

Мы видим со всей определенностью, что интенсивность /12, наблюдаемая, когда оба отверстия открыты, не равна сум­ме интенсивностей I1 и I2. Мы говорим, что здесь происходит «интерференция», наложение двух волн. В некоторых местах: (где на кривой Ii2 наблюдается максимум) волны оказываются «в фазе», пики волн складываются вместе, давая большую ам­плитуду и тем самым большую интенсивность. В этих местах говорят о «конструктивной интерференции». Она наблюдается в тех местах, расстояние которых от одной из щелей на целое число длин волн больше (или меньше) расстояния от другой.

А в тех местах, куда две волны приходят со сдвигом фаз p(т. е. находятся «в противофазе»), движение водил представ­ляет собой разность двух амплитуд. Волны «интерферируют деструктивно», интенсивность получается маленькой. Это бывает там, где расстояние от щели 1 до детектора отличается от расстояния между детектором и щелью 2 на нечетное число полуволн. Малые значения I12 на фиг. 37.2 отвечают местам, где две волны интерферируют деструктивно.

Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высо­та волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’1eiwt, где «амплитуда» h’1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’1|2. Высота волн от щели 2 тоже равна h2eiwt, а интенсивность пропорциональна |h’2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’1+h’2)eiwt

и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерфери­рующих волн можно записать в виде

Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем

где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать

Последний член и есть «интерференционный член».

На этом мы покончим с волнами. Интенсивность их мо­жет быть любой, между ними возникает интерференция.

§ 4. Опыт с электронами

Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой то­ком и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на короб­ку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пуш­кой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками

Фиг. 37.3. Опыт с электронами.

За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.

Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов при­бор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, из­вестно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.

Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полу­щелков».

Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........

щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть

счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколь­ко раз динамик щелкнул за достаточно длительное время (ска­жем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).

Перейти на страницу:

Похожие книги