(13;25)
или
(13.26)
Теперь мы можем понять, почему в системе
С помощью (13.24) и (13.26) имеем
Поскольку покоящаяся проволока нейтральна, r-
= -r+, получаем(13.27)
Наша движущаяся проволока заряжена положительно и должна создавать поле
(13.28)
Сила, действующая на отрицательно заряженную частицу, направлена к проволоке. Мы имеем силу, направленную одинаково в обеих системах; электрическая сила в системе
(13.29)
Сравнивая этот результат для
(13.30)
поэтому для малых скоростей, которые мы рассматриваем, обе силы одинаковы. Мы можем сказать, что по меньшей мере для малых скоростей магнетизм и электричество суть просто «две разные стороны одной и той же вещи».
Но оказывается, что все обстоит даже еще лучше, чем мы сказали. Если принять во внимание тот факт, что
Чтобы это увидеть, можно, например, задать вопрос: какой поперечный импульс приобретет частица, на которую в течение некоторого времени действовала сила? Мы знаем из вып. 2, гл. 16, что поперечный импульс частицы должен быть один и тот же как в системе
(13.31)
В системе S' поперечный импульс будет равен
(13.32)
Мы должны сравнивать Dpy
и Dpy' , конечно, для соответствующих интервалов времени Dt и Dt'. В гл. 15 (вып. 2) мы видели, что интервалы времени, относящиеся к движущейся частице, кажутсямы
ожидаем, что для малых D(13.33)
и все получается великолепно. Согласно (13.31) и (13.32),
и если скомбинировать (13.30) и (13.33), то это отношение равно единице.
Вот и выходит, что мы получаем один и тот же результат, независимо от того, анализируем ли мы движение летящей рядом с проволокой частицы в системе покоя проволоки или в системе покоя частицы. В первом случае сила была чисто «магнитной», во втором — чисто «электрической». Оба способа наблюдения показаны на фиг. 13.12 (хотя во второй системе еще есть и магнитное поле В', оно не воздействует на неподвижную частицу).
Если бы мы выбрали еще одну систему координат, мы бы нашли некую другую смесь полей E и В. Электрические и магнитные силы составляют части