Снова
Величина А пропорциональна I
(14.32)
Векторный потенциал маленькой плоской петельки
(14.33)
Мы предоставляем вам право это доказать.
Нашему уравнению можно придать векторную форму, если определить вектор m
как нормаль к плоскости петли с положительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать(14.34)
Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4). получаем
(14.35)
(под многоточием мы подразумеваем m/4pe0
с2),Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравнения (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в применении к магнитному полю немного запутывает, потому что
В общем-то довольно любопытно, что, начав с совсем разных законов, С·Е=r/e0
и СXВ=j/e0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако§ 6. Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упростить уравнения для магнитного поля.
Для тонкого провода элемент объема можно записать в виде
где
(14.37)
Ho
(14.38)
(фиг. 14.10). (Мы предполагаем, что / одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)
Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую электростатическую задачу.
§ 7. Закон Био— Савара
В ходе изучения электростатики мы нашли, что электрическое поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]
Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него градиент.
Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:
А теперь мы должны быть осторожны. Оператор ротора означает взятие производных от А(1), т. е. он действует только на координаты (x1
, y1, z1). Можно внести оператор СX под интеграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только вМы получаем для x-компоненты В:
(14.41)
Величина в скобках есть просто x-компонента от
Такие же результаты получаются и для других компонент, и мы имеем
(14.42)
Интеграл дает В сразу через известные токи. Геометрия здесь точно такая же, какая изображена на фиг. 14.2.