Читаем 6a. Электродинамика полностью

При выводе наших уравнений для энергии и импульса мы предполагали справедливость законов сохранения. Мы считали, что учтены все силы, учтена любая работа и любой импульс, порождаемый другими «неэлектрическими» механизмами. Но если мы имеем дело с заряженной сферой, то, поскольку все электрические силы — это силы отталкивающие, электрон стремится разорваться. А раз в системе не учтены уравновеши­вающие силы, то в законах, связывающих импульс и энергию, возможны любые ошибки. Чтобы картина была самосогласован­ной, нужно предположить, что нечто удерживает электрон от разрыва. Заряды должны удерживаться на сфере чем-то вроде «резинок», которые препятствуют их стремлению разлететься в стороны. Пуанкаре первый заметил, что подобные «резинки» или нечто в этом роде, связывающие электрон, необходимо учи­тывать при вычислении энергии и импульса. По этой причине дополнительные неэлектрические силы известны под именем «напряжений Пуанкаре». Если включить их в расчет, то это сразу изменит массы, полученные в обоих случаях (характер изменения зависит от детальных предположений), и результат будет согласовываться с теорией относительности, т. е. масса, полученная из вычислений импульса, становится той же самой, что и масса, полученная из энергии. Однако теперь массы будут состоять из двух частей: электромагнитной и происходящей от «напряжений Пуанкаре». И только когда обе части складыва­ются вместе, мы получаем согласованную теорию.

Итак, наши надежды не оправдались, мы не можем всю массу сделать чисто электромагнитной. Теория, содержащая только электродинамику, незаконна. К ней необходимо приба­вить что-то еще. Как бы мы ни назвали это «что-то» — «резин­ками» или «напряжениями Пуанкаре» или как-то по-другому,— оно все равно должно порождать новые силы, обеспечивающие согласованность теории такого рода.

Но совершенно ясно, что, как только мы вынуждены поса­дить внутрь электрона посторонние силы, красота всей картины тотчас исчезает. Все становится слишком сложным. Сразу же возникает вопрос: насколько сильны эти напряжения? Что про­исходит с электроном? Осциллирует ли он или нет? Каковы все его внутренние свойства? И т. д. и т. п. Возможно, что какие-то внутренние свойства электрона все-таки очень сложны. И если мы начнем строить электрон, следуя этому рецепту, то придем к каким-нибудь странным свойствам наподобие собственных гармоник, которые, по-видимому, еще не наблюдались. Я сказал «по-видимому», ибо в природе мы наблюдаем множество стран­ных вещей, которым еще не можем придать никакого смысла. Возможно, что когда-нибудь в один прекрасный день окажется, что какое-то явление, из тех, что непонятны нам сегодня m-ме­зон, например), можно на самом деле объяснить как осцилляции «напряжений Пуанкаре». Сейчас это не кажется правдоподоб­ным, но кто может гарантировать? Ведь мы еще столького не понимаем в мире элементарных частиц! Во всяком случае, сложная структура, предполагаемая этой теорией, весьма нежелательна, и попытка объяснить все массы только через электромагнетизм, по крайней мере описанным нами способом, завела в тупик.

Мне еще хотелось бы порассуждать немного о том, почему при пропорциональности импульса поля скорости мы говорили о массе. Очень просто! Ведь масса — это и есть коэффициент между импульсом и скоростью. Однако возможна и другая точка зрения. Можно говорить, что частица имеет массу, если для ускорения ее мы вынуждены прилагать какую-то силу. Посмот­рим повнимательней на то, откуда берутся силы; это может помочь нашему пониманию. Откуда мы узнаем, что здесь должно проявиться действие сил? Да просто потому, что мы доказали закон сохранения импульса для полей. Если у нас есть заряжен­ная частица и мы некоторое время «нажимаем» на нее, то у электромагнитного поля появится импульс. Каким-то образом он был передан электромагнитному полю. Следовательно, чтобы разогнать электрон, к нему нужно приложить силу, дополни­тельную к той, которая требуется механической инерцией, связанную с его электромагнитным взаимодействием. При этом должна возникнуть соответствующая обратная реакция со стороны «толкаемого» нами электрона. Но откуда берется эта сила? Картина примерно такова. Можно считать электрон за­ряженной сферой. Когда он покоится, то каждый его заряженный участок отталкивает любой другой, но все силы уравновешены попарно, так что результирующая равна нулю (фиг. 28. 3, а).



Фиг 28.3. Сила действия ускоряющегося электрона благодаря запаздыванию не равна нулю.

Под dF мы подразумеваем силу, действующую на элемент поверхности da, а под d2F — силу, действующую на элемент поверхности daa со стороны заряда, расположенного на элементе поверхности dab .

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература