Читаем 6a. Электродинамика полностью

Во всех высших членах радиус а входит в числитель в положи­тельной степени. Поэтому, когда мы переходим к пределу точеч­ного заряда, остается только один член — как раз тот, который нам нужен. Таким путем Дирак сохранил радиационное сопро­тивление и избавился от силы инерции. Электромагнитная мас­са исчезла, классическая теория спасена, но благополучие это достигнуто ценой насилия над самодействием электрона.

Произвол дополнительных предположений Дирака был устранен, по крайней мере до некоторой степени, Уилером и Фейнманом, которые предложили еще более странную теорию. Они предположили, что точечный заряд взаимодействует только с другими зарядами, но взаимодействие идет наполовину через запаздывающие, наполовину через опережающие волны. Самое удивительное, как оказалось, что в большинстве случаев вы не видите эффекта опережающих волн, но они дают как раз нужную силу радиационного сопротивления. Однако радиационное со­противление возникает не как самодействие электрона, а в ре­зультате следующего интересного эффекта. Когда электрон ускоряется в момент t, то он влияет на все другие заряды в мире в поздний момент t'=t+r/c (где rрасстояние до других зарядов) из-за запаздывающих волн. Но затем эти другие за­ряды действуют снова на первоначальный электрон с помощью опережающих волн, которые приходят к нему в момент t", равный t' минус r/c, что как раз равно t. (Они, конечно, воздей­ствуют и с помощью запаздывающих волн, но это просто соот­ветствует обычным «отраженным» волнам.) Комбинация опере­жающих и запаздывающих волн означает, что в тот момент, когда электрон ускоряется, осциллирующий заряд испытывает воздействие силы со стороны всех зарядов, которые «приготовились» поглотить излученные им волны. Вот в какой петле запутались физики, пытаясь спасти теорию электрона!

Я расскажу вам еще об одной теории, чтобы показать, до каких вещей додумываются люди, когда они увлечены. Это несколько другая модификация законов электродинамики, ко­торую предложил Бопп.

Вы понимаете, что, решившись изменить уравнения электро­магнетизма, можно делать это в любом месте. Вы можете изме­нить закон сил, действующих на электрон, или можете изме­нить уравнения Максвелла (как это будет сделано в теории, которую я собираюсь описать) или еще что-нибудь. Одна из возможностей — изменить формулы, определяющие потенциал через заряды и токи. Возьмем формулу, которая выражает по­тенциалы в некоторой точке через плотности токов (или зарядов) в любой другой точке в ранний момент времени. С помощью четырехвекторных обозначений для

потенциалов мы можем за­писать ее в виде


(28.13)


Удивительно простая идея Боппа заключается в следующем. Может быть, все зло происходит от множителя 1/r под интегра­лом. Предположим с самого начала, что потенциал в одной точке зависит от плотности зарядов в любой точке как некоторая функция расстояния между точками, скажем как f(r12). Тогда полный потенциал в точке 1 будет определяться интегралом по всему пространству от произведения jm на эту функцию


Вот и все. Никаких дифференциальных уравнений, ничего больше. Есть только еще одно условие. Мы должны потребо­вать, чтобы результат был релятивистски инвариантным. Так что в качестве «расстояния» мы должны взять инвариантное «расстояние» между двумя точками в пространстве-времени. Квадрат этого расстояния (с точностью до знака, который несуществен) равен



Так что для релятивистской инвариантности теории функция должна зависеть от s12 или, что то же самое, от s212. Таким об­разом, в теории Боппа

(Интеграл, разумеется, должен браться по четырехмерному объему dtzdxzdy2dz2.)



Фиг. 28,4. Функция F(s2), ис­пользуемая в нелокальной теории Боппа.


Теперь остается только выбрать подходящую функ­цию F. Относительно нее мы предполагаем только одно, что она повсюду мала, за исключением области аргу­мента вблизи нуля, т. е. что график F ведет себя подобно кривой, изображенной на фиг. 28.4. Это узкий пик в окрестности s2=0, шириной которого грубо можно считать величину а2. Если вычисляется потенциал в точке 1, то при­ближенно можно утверждать, что заметный вклад дают только те точки 2, для которых s212 = с2(t2-t1)2-r212 отличается от нуля на ±a2. Это можно выразить, сказав, что F важно только для


(28.16)

Если понадобится, можно проделать все математически более строго, но идея вам уже ясна.

Предположим теперь, что а очень мало по сравнению с размерами обычных объектов типа электромоторов, генераторов и тому подобное, поэтому для обычных задач г12>>а. Тогда вы­ражение (28.16) говорит, что в интеграл (28.15) дают вклад только те токи, для которых t1-t2 очень мало:


Но поскольку а2/r212<<1, то квадратный корень приближенно равен 1 ±а2/2r212, так что

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература