Оператор Гамильтона (с точностью до константы), действуя на любое состояние, приводит к тому же результату, что и
Только для того, чтобы попрактиковаться в этих представлениях, продемонстрируем вам другой вывод уравнения (9.18). Вы знаете, что любое состояние |y> можно записать через его проекции на какой-то базис [см. (6.8)]:
Как же меняется |y> во времени? Продифференцируем его:
Но базисные состояния |
Но ведь
А это опять-таки уравнение (9.18).
Итак, на гамильтониан можно смотреть по-разному. Можно рассматривать совокупность коэффициентов
«оператором»
Вернемся теперь к нашей системе с двумя состояниями. Если уж мы записываем гамильтониан через матрицы сигма (с подходящими численными множителями, такими, как
Желая «использовать» это уравнение, нам, естественно, приходится выражать |y> через базисные векторы (равносильно тому, что приходится находить компоненты пространственных векторов, когда задача доводится до числа). Так что обычно мы предпочитаем расписывать (9.23) в более раскрытом виде:
Сейчас вы увидите, чем красива идея оператора. Чтобы применять уравнение (9.24), нужно знать, что будет, когда операторы о подействуют на каждое базисное состояние. Напишем s^
(пользуясь табл. 9.1). Итак, мы знаем, что
<+|?>=1. (9.25)
Теперь умножим s^z
|+> слева на <-|. Получитсят, е.
Существует только один вектор состояния, удовлетворяющий и (9.25), и (9.26); это |+>. Мы, стало быть, открыли, что
Такого рода рассуждениями можно легко показать, что все свойства матриц сигма могут быть в операторных обозначениях описаны рядом правил, приведенных в табл. 9.3.
Если у нас есть произведения матриц сигма, то они переходят в произведения операторов. Когда два оператора стоят рядом в виде произведения, то сперва приступает к операции тот оператор, который стоит правее. Скажем, под s^
Числа (как, например,
Если сделать то же самое с s^
Если взглянуть на табл. 9.3, то видно, что s^
Убедитесь, что это уравнение совпадает с одним из наших матричных уравнений табл. 9.2. Итак, мы опять видим соответствие между матричной и операторной точкой зрения. Каждое из уравнений в. табл. 9.2 может поэтому рассматриваться и как
уравнение относительно операторов сигма. Можно проверить,
что они действительно следуют из табл. 9.3. Работая с этими
вещами, лучше не следить за тем, являются ли величины типа 0
или
:
выйдут одни и те же, так что табл. 9.2 можно при желании относить то к операторам сигма, то к матрицам сигма.§ 3. Решение уравнений для двух состояний
Теперь можно писать наше уравнение двух состояний в раз-jличных видах, например:
или вот так:
Оба они означают одно и то же. Для частицы со спином 1
/2 в магнитном поле гамильтониан