Читаем 8a. Квантовая механика I полностью

Взглянув на табл. 9.1, вы видите, что это просто матрица sx, умноженная на i. (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с s2хи sхsy.

С матрицами о связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы sх., syи sz подобны трем компонентам вектора; его иногда име­нуют «вектором сигма» и обозначают а. Это на самом деле «мат­ричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью х, у или z. С их по­мощью гамильтониан системы можно записать в красивом виде, пригодном для любой системы координат:

Таблица 9.2 · ПРОИЗВЕДЕНИЯ СПИНОВЫХ МАТРИЦ

Хотя мы записали эти три матрицы в представлении, в кото­ром понятия «вверх» и «вниз» относятся к направлению z (так что sz выглядит особенно просто), но можно представить себе, как будут они выглядеть в любом другом представлении. И хотя это требует немалых выкладок, можно все же показать, что они изменяются как компоненты вектора. (Мы, впрочем, пока не будем заботиться о том, чтобы доказать это. Проверьте сами, если хотите.) Вы можете пользоваться о в различных системах координат, как если бы это был вектор.

Вы помните, что гамильтониан Н связан в квантовой механике с энергией. Он действительно в точности совпадает с энергией в том простом случае, когда состояний только одно. Даже в системе с двумя состояниями, какой является спин электрона, если записать гамильтониан в виде (9.13), он очень напоминает классическую формулу энергии магнита с магнитным моментом m в магнитном поле В. Классически это выглядит так:

где m — свойство объекта, а В — внешнее поле. Можно вообра­зить себе, что (9.14) обращается в (9.13), если классическую энергию заменяют гамильтонианом, а классическое m — мат­рицей (ms. Тогда после такой чисто формальной замены результат можно будет интерпретировать как матричное уравнение. Иногда утверждают, что каждой величине в классической физике соответствует в квантовой механике матрица. На самом деле правильнее было бы говорить, что матрица Гамильтона соот­ветствует энергии и что у каждой величины, которая может быть определена через энергию, есть соответствующая матрица. Например, магнитный момент можно определить через энергию, сказав, что энергия во внешнем поле В есть —m·B. Это определяет вектор магнитного момента m. Затем мы смотрим на формулу для гамильтониана реального (квантового) объекта в магнитном поле и пытаемся угадать, какие матрицы соответ­ствуют тем или иным величинам в классической формуле. С помощью этого трюка иногда у некоторых классических вели­чин появляются их квантовые двойники.

Если хотите, попробуйте разобраться в том, как, в каком смысле классический вектор равен матрице ms; может быть, вы что-нибудь и откроете. Но не надо ломать над этим голову. Право же, не стоит: на самом-то деле они не равны. Кван­товая механика — это совсем другой тип теории, другой тип представлений о мире. Иногда случается, что всплывают неко­торые соответствия, но вряд ли они представляют собой нечто большее, нежели мнемонические средства — правила для за­поминания.

Перейти на страницу:

Похожие книги