Если угодно, можно размышлять о гамильтониане иначе. Если поблизости друг от друга находятся два магнита с магнитными моментами mе
и mр, то их взаимная энергия зависит, кроме всего прочего, и от mе·mр. А мы, как вы помните, выяснили, что та вещь, которую мы в классической физике называли mе, в квантовой механике выступает под именем mese. Подобным же образом, то, что в классической физике выглядит как mp, в квантовой механике обычно оказывается равным mрsр (где mр— магнитный момент протона, который почти в 1000 раз меньше mе и имеет обратный знак). Значит, (10.5) утверждает, что энергия взаимодействия подобна взаимодействию двух магнитов, но не до конца, потому что взаимодействие двух магнитов зависит от расстояния между ними. Но (10.5) может считаться (и на самом делеПорядок величины классического взаимодействия между двумя магнитами должен был бы даваться произведением двух магнитных моментов, деленным на куб расстояния между ними. Расстояние между электроном и протоном в атоме водорода, грубо говоря, равно половине атомного радиуса, т. е. 0,5 А. Поэтому можно примерно прикинуть, что постоянная
Взяв гамильтониан (10.5), можно подставить его в уравнение
и посмотреть, что делает спиновое взаимодействие с уровнями энергии. Для этого надо подсчитать шестнадцать матричных элементов
Начнем с того, что подсчитаем, чему равно
Пользуясь способом, описанным немного раньше (вспомните табл. 10.1, она очень облегчит дело), мы найдем, что каждая пара а делает с |+ +>· Ответ таков:
Значит, (10.7) превращается в
А раз все наши четыре базисных состояния ортогональны, то это немедленно приводит к
Вспоминая, что
или
Вот и все! Только один член.
Чтобы теперь получить оставшиеся уравнения Гамильтона, мы должны терпеливо пройти через те же процедуры с
И тогда, умножая их все по порядку слева на все прочие векторы состояний, мы получаем следующую гамильтонову матрицу
Это, конечно, означает, что дифференциальные уравнения для четырех амплитуд
Но прежде чем перейти к их решению, трудно удержаться от того, чтобы не рассказать вам об одном умном правиле, которое вывел Дирак. Оно поможет вам ощутить, как много вы уже знаете, хотя нам в нашей работе оно и не понадобится. Из уравнений (10.9) и (10.12) мы имеем
«Взгляните, — сказал Дирак, — первое и последнее уравнения я могу записать также в виде
и тогда все они станут похожими. Теперь я придумаю новый оператор, который обозначу
Оператор этот, как видите, только обменивает направления спина у двух частиц. Тогда всю систему уравнений (10.15) я могу написать как одно простое операторное уравнение:
Это и есть формула Дирака. Оператор обмена спинами дает удобное правило для запоминания s
е·sp . (Как видите, вы теперь уже все умеете делать. Для вас все двери открыты.)§ 3. Уровни энергии