Сделаем теперь новую инверсию. После двух
инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться
Но
Отсюда следует, что (еi
d)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то У d могут быть только две возможности:еi
d=±1,а это означает, что или
В классической физике, если состояние симметрично относительно инверсии, то эта операция дает опять то же состояние. А в квантовой механике имеются две возможности: получается
либо то же состояние,
либо минус то же состояние. Когда получается то же состояние, Р^|y0>=|y0>, мы говорим, что у состояния |y0> четность положительна. Если знак меняется, так что Р^|y0>=-|y0>, мы говорим, что четность состояния отрицательна. (Оператор инверсии Р^ известен также как оператор четности.) Состояние |I> иона Н+2 обладает положительной четностью; состояние же |II> — отрицательной [см. (15.12)]. Бывают, конечно, состояния, не симметричные относительно операции Р^;это состояния без определенной четности. Например, в системе Н+2 состояние |I> имеет положительную четность, состояние | II> — отрицательную, а состояние | 1у определенной четности не имеет.Когда мы говорим о том, что операция (например, инверсия) была совершена «над физической системой»,
то это можно представлять себе двояким образом. Можно считать, что все, что было в точке r, физически сдвинулось в обратную точку -r; или можно считать, что мы смотрим на ту же систему из новой системы отсчета х', y', z', связанной со старой формулами х'=-х, у' =-у и z'=-z. Точно так же, когда мы говорим о поворотах, то можно либо считать, что мы поворачиваем целиком всю физическую систему, либо что поворачиваем систему координат, в которой мы измеряем нашу систему, оставляя последнюю закрепленной в пространстве. Эти две точки зрения по существу равноценны. Они равноценны и при повороте, только поворот системы на угол q подобен повороту системы отсчета на отрицательный угол —q. В нашем курсе мы обычно смотрели, что получается, когда берется проекция на новую систему осей. То, что при этом получается, совпадает с тем, что получится, если мы оставим оси прежними и повернем тело на столько же назад. Когда вы это делаете, не забудьте поменять знаки углов.Многие законы
физики (но не все) не меняются при отражении или инверсии координат. Они симметричны по отношению к инверсии. Законы электродинамики, например, не изменяются, если мы меняем x на -х, у на -у и z на -z во всех уравнениях. То же относится и к законам тяжести, и к сильным взаимодействиям ядерной физики. Только у слабых взаимодействий, ответственных за b-распад, нет такой симметрии. [Мы обсуждали это несколько подробнее в гл. 52 (вып. 4).] Но мы сейчас пренебрежем b-распадом. Тогда в любой физической системе, на которую, как можно думать, b-распад не оказывает заметного влияния (в качестве примера возьмем испускание света атомом), гамильтониан H^ и оператор Р^ будут коммутировать, В этих обстоятельствах верно следующее утверждение. Если четность состояния вначале положительна и вы поинтересуетесь физической ситуацией через некоторое время, то увидите, что четность останется положительной. Пусть, например, нам известно, что атом перед тем, как испустить фотон, находился в состоянии с положительной четностью. Вы рассматриваете всю эту систему (включая фотон) после испускания; четность опять будет положительна (и точно так же было бы, если бы вы начали с отрицательной четности). Этот принцип именуется сохранением четности. Вы теперь понимаете, почему слова «сохранение четности» и «симметрия относительно отражений» в квантовой механике тесно переплетены. Хотя до последних лет считалось, что природа всегда сохраняет четность, теперь известно, что это не так. Выяснилось, что это неверно, потому что реакция b-pаспада не обладает симметрией относительно инверсии, обнаруженной в других законах физики.Теперь мы можем доказать интересную теорему (справедливую до тех пор, пока слабыми взаимодействиями можно пренебрегать): любое состояние определенной энергии, не являющееся вырожденным, обязано обладать определенной четностью. Его четность должна быть либо положительна, либо отрицательна. (Припомните, что нам иногда встречались системы, в которых несколько состояний имели одну и ту же энергию,— такие состояния мы называем вырожденными.
Так вот наша теорема к ним не относится.)Мы знаем, что если |y0
> — состояние определенной энергии, то
где Е —
просто число, энергия состояния. Если у нас имеется произвольный оператор Q^, который является оператором симметрии для системы, то мы можем доказать, что