Читаем 9. Квантовая механика II полностью

Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться

Но

Отсюда следует, что (еid)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то У d могут быть только две возможности:

еid=±1,

а это означает, что или

В классической физике, если состояние симметрично отно­сительно инверсии, то эта операция дает опять то же состояние. А в квантовой механике имеются две возможности: получается


либо то же состояние, либо минус то же состояние. Когда полу­чается то же состояние, Р^|y0>=|y0>, мы говорим, что у со­стояния |y0> четность положительна. Если знак меняется, так что Р^|y0>=-|y0>, мы говорим, что четность состояния отрицательна. (Оператор инверсии Р^ известен также как опе­ратор четности.) Состояние |I> иона Н+2 обладает положитель­ной четностью; состояние же |II>отрицательной [см. (15.12)]. Бывают, конечно, состояния, не симметричные отно­сительно операции Р^;это состояния без определенной четности. Например, в системе Н+2 состояние |I> имеет положительную четность, состояние | II>отрицательную, а состояние | определенной четности не имеет.

Когда мы говорим о том, что операция (например, инверсия) была совершена «над физической системой», то это можно пред­ставлять себе двояким образом. Можно считать, что все, что было в точке r, физически сдвинулось в обратную точку -r; или можно считать, что мы смотрим на ту же систему из новой системы отсчета х', y', z', связанной со старой формулами х'=-х, у' =-у и z'=-z. Точно так же, когда мы говорим о поворотах, то можно либо считать, что мы поворачиваем цели­ком всю физическую систему, либо что поворачиваем систему координат, в которой мы измеряем нашу систему, оставляя последнюю закрепленной в пространстве. Эти две точки зрения по существу равноценны. Они равноценны и при повороте, только поворот системы на угол q подобен повороту системы отсчета на отрицательный угол —q. В нашем курсе мы обычно смотрели, что получается, когда берется проекция на новую систему осей. То, что при этом получается, совпадает с тем, что получится, если мы оставим оси прежними и повернем тело на столько же назад. Когда вы это делаете, не забудьте поменять знаки углов.

Многие законы физики (но не все) не меняются при отраже­нии или инверсии координат. Они симметричны по отношению к инверсии. Законы электродинамики, например, не изменяются, если мы меняем x на -х, у на -у и z на -z во всех уравнениях. То же относится и к законам тяжести, и к сильным взаимодей­ствиям ядерной физики. Только у слабых взаимодействий, ответственных за b-распад, нет такой симметрии. [Мы обсуждали это несколько подробнее в гл. 52 (вып. 4).] Но мы сейчас пре­небрежем b-распадом. Тогда в любой физической системе, на которую, как можно думать, b-распад не оказывает заметного влияния (в качестве примера возьмем испускание света атомом), гамильтониан H^ и оператор Р^ будут коммутировать, В этих обстоятельствах верно следующее утверждение. Если четность состояния вначале положительна и вы поинтересуетесь физиче­ской ситуацией через некоторое время, то увидите, что четность останется положительной. Пусть, например, нам известно, что атом перед тем, как испустить фотон, находился в состоянии с положительной четностью. Вы рассматриваете всю эту систему (включая фотон) после испускания; четность опять будет поло­жительна (и точно так же было бы, если бы вы начали с отрица­тельной четности). Этот принцип именуется сохранением чет­ности. Вы теперь понимаете, почему слова «сохранение четно­сти» и «симметрия относительно отражений» в квантовой меха­нике тесно переплетены. Хотя до последних лет считалось, что природа всегда сохраняет четность, теперь известно, что это не так. Выяснилось, что это неверно, потому что реакция b-pаспада не обладает симметрией относительно инверсии, обнаружен­ной в других законах физики.

Теперь мы можем доказать интересную теорему (справедли­вую до тех пор, пока слабыми взаимодействиями можно прене­брегать): любое состояние определенной энергии, не являющееся вырожденным, обязано обладать определенной четностью. Его четность должна быть либо положительна, либо отрицательна. (Припомните, что нам иногда встречались системы, в которых несколько состояний имели одну и ту же энергию,— такие со­стояния мы называем вырожденными. Так вот наша теорема к ним не относится.)

Мы знаем, что если |y0> — состояние определенной энергии, то

где Е — просто число, энергия состояния. Если у нас имеется произвольный оператор Q^, который является оператором сим­метрии для системы, то мы можем доказать, что

Перейти на страницу:

Похожие книги