Постоянная
Это стандартные уравнения двух связанных квантовомеханических состояний. На этот раз давайте проанализируем их по-иному. Сделаем подстановки:
где q1
и q2— фазы по обе стороны контакта, a r1и r2— плотности электронов в этих двух точках. Вспомним, что на практике r1 и r2 почти точно совпадают друг с другом и равны r0 — нормальной плотности электронов в сверхпроводящем материале. Если вы теперь подставите эти формулы для y1 и y2 в (19.40) и приравняете вещественные части вещественным, а мнимые — мнимым, то получится четверка уравнений (для краткости обозначено q2-q1=d):Первая пара уравнений говорит, что r1
=-r2 «Но,— скажете вы,— они ведь обе должны быть равны нулю, раз r1и r2 обе постоянны и равны r0». Не совсем. Эти уравнения описывают не все. Они говорят, какими были бы r1 и r2,Такой ток вскоре зарядил бы сторону 2,
Поскольку r1
и r2 действительно остаются постоянными и равными r0, давайте положимТогда
Другая пара уравнений (19.43) дает нам q1
и q2. Нас интересует разность d=q2-q1, которую мы хотим подставить в (19.45); из уравнений же мы имеемЭто значит, что можно написать
где d0
— значение d приТак что же из них следует? Сначала приложим постоянное напряжение. Если приложить постоянное напряжение V0
, то аргумент синуса примет вид dТок можно получить и другим способом: кроме постоянного напряжения — приложить еще и высокую частоту. Пусть
где
Но при малых D
Разложив по этому правилу sind, я получу
Первый член в среднем дает нуль, но второй в нуль не обращается, если
Значит, если частота переменного напряжения равна
Если вы просмотрите работы на эту тему, то заметите, что в них формула для тока часто записывается в виде
где интеграл берется по пути, ведущему через переход. Причина здесь в том, что если переход находится в поле векторного потенциала, то фаза амплитуды переброса видоизменяется так, как было объяснено вначале [уравнение (19.1)]. Если вы всюду включите такой сдвиг фазы, то получите нужные формулы.
Наконец, я хотел бы описать очень эффектный и интересный опыт по интерференции токов, проходящих через два перехода, который был недавно проделан. Мы привыкли встречаться в квантовой механике с интерференцией амплитуд от двух щелей. Сейчас мы будем иметь дело с интерференцией двух токов, текущих через два перехода между сверхпроводниками. Она вызывается различием в фазах, с которыми сливаются токи, прошедшие по двум разным путям. На фиг. 19.7 показано параллельное соединение двух переходов