Читаем А ну-ка, догадайся! полностью

Половина машин должна была отойти старшему сыну, четверть — среднему и одна шестая — младшему.

Сыновья были не на шутку озадачены. Ну как можно разделить пополам 11 машин или, скажем, отделить от них четверть или одну шестую?

В разгар споров по поводу наследства мимо проезжала в своей новой спортивной машине знаменитый нумеролог миссис Зеро.

М-с Зеро.Хэлло, мальчики!

Что-то вид у вас не очень веселый. Может быть, я могу вам чем-нибудь помочь?

После того как братья объяснили миссис Зеро суть своих затруднений, она поставила свою машину рядом с 11 коллекционными машинами и выпорхнула из нее.

М-с Зеро.Сколько теперь машин перед вами?

Братья сосчитали — получилось 12 машин.

Затем миссис Зеро разделила 12 машин в соответствии с завещанием. Половину, или 6 машин, она отдала старшему сыну, четвертую часть, или 3 машины, — среднему сыну, и шестую часть, или 2 машины, — младшему сыну.

М-с 3еро.6 плюс 3 плюс 2 — 11 машин. Одна машина лишняя, это моя машина.

Изящно впорхнув в свою машину, миссис Зеро дала газ и умчалась.

М-с Зеро.Всегда к вашим услугам, мальчики! Счет за консультацию я пришлю вам попозже.

Этот парадокс представляет собой современный вариант старинной арабской головоломки, в котором вместо лошадей речь идет о машинах. Вы можете по своему усмотрению изменять завещание старого чудака, варьируя число машин в оставшейся после него коллекции и доли наследства, причитающиеся его, сыновьям, следя лишь за тем, чтобы соблюдалось единственное условие: пополнив коллекцию еще одной машиной, сыновья получали возможность разделить наследство в соответствии с завещанием и вернуть «лишнюю» машину тому, кто любезно одолжил им ее.

Например, коллекция, оставшаяся после смерти адвоката, могла бы насчитывать 17 машин, а в завещании могло бы говориться о том, что сыновья должны получить соответственно 1/2, 1/3 и 1/9 всех машин.

Если n— число машин в коллекции, 1/а, 1/b и 1/c — доли, причитающиеся сыновьям по наследству, то парадокс возникает только в том случае, если уравнение

допускает решение в положительных целых числах.

Удастся ли вам обобщить задачу на случай большего числа наследников и машин, занимаемых для того, чтобы стал возможным раздел наследства в соответствии с завещанием?

Решение парадокса состоит в том, что сумма долей, указанных в завещании, меньше 1. Если бы сыновья во исполнение завещания вздумали бы резать машины, то после раздела наследства 11/12 машины остались бы «невостребованными». Миссис Зеро, по существу, показала братьям, как распределить между ними эти дополнительные 11/12 машины. В результате старший сын получает на 6/12, средний — на 3/12 и младший — на 2/12 машины больше, чем получили бы первоначально. В сумме эти три дроби (6/12 + 3/12 + 2/12) составляют 11/12, а поскольку каждый сын получает целое число машин, необходимость в разрезании машин отпадает.

Необыкновенный код

Доктор Зета, ученый из галактики Геликс, лежащей в другом измерении пространства — времени, прибыл на Землю для сбора научной информации об ее обитателях.

В США он был гостем доктора Германа.

Д-р Герман.Почему бы вам не прихватить с собой Британскую энциклопедию? В ней в сжатом виде изложен колоссальный опыт всего человечества.

Д-р Зета.Великолепная идея! Жаль только, что я не смогу взять с собой столь большую массу.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже