Читаем А ну-ка, догадайся! полностью

Перед своим отлетом доктор Зета поведал поистине фантастическую историю.

Д-р Зета.В самом центре нашей галактики находится огромная гостиница «Бесконечность». В ней действительно бесконечно много однокомнатных номеров, уходящих через черную дыру в другое измерение. В гостинице есть первый номер, есть второй (комнаты перенумерованы по порядку), но нет последнего.

Д-р Зета.Однажды в гостиницу по пути в другую галактику заглянул командир неизвестного летающего объекта (НЛО).

Д-р Зета.Хотя ни одного свободного места не было, управляющий гостиницей все же нашел способ устроить пилота: он попросил каждого обитателя гостиницы переселиться в комнату с номером на единицу больше, чем у той, в которой тот проживал прежде, и поселил командира НЛО в освободившийся первый номер.

Д-р 3ета.На следующий день в гостиницу прибыли 5 супружеских пар, совершавших свадебное путешествие.Управляющий и тут не растерялся и, переселив каждого обитателя гостиницы в комнату с номером на 5 больше, чем у той, в которой тот проживал прежде, отвел супружеским парам освободившиеся комнаты с номерами от 1 до 5.

Д-р 3ета.В конце недели в гостиницу нагрянули участники съезда продавцов жевательной резинки. Их было бесконечно много.

Д-р Герман.Я в силах понять, как управляющий гостиницы «Бесконечность» мог бы разместить любое конечное число вновь прибывших, но как разместить бесконечное множество гостей?

Д-р 3ета.Управляющий легко справился и с этой задачей: каждого обитателя гостиницы он переселил в комнату с номером вдвоебольше, чем у той, которую тот занимал прежде.

Д-р Герман.Понял! Все прежние постояльцы гостиницы оказались после переселения в комнатах с четными номерами, а бесконечное множество освободившихся комнат с нечетными номерами управляющий предоставил продавцам жевательной резинки.

Ни одно конечное множество невозможно поставить во взаимно-однозначное соответствие с любым из его собственных подмножеств. В случае бесконечных множеств такое утверждение неверно. Бесконечные множества нарушают старое правило «часть меньше целого». Бесконечное множество можно определить как множество, которое можно поставить во взаимно-однозначное соответствие с собственным подмножеством.

Управляющий гостиницей «Бесконечность» сначала показал, что множество всех натуральных чисел можно поставить во взаимно-однозначное соответствие с одним из его собственных подмножеств, вычеркивая из исходного множества один или пять элементов. Тот же прием позволяет устанавливать взаимно-однозначное соответствие между бесконечным множеством и его собственным подмножеством, получаемым при вычеркивании любого конечного числа элементов.

Вычеркиванию элементов можно придать несколько более драматический характер. Представим себе, что на столе перед нами лежат шкала к шкале две бесконечные линейки с равномерными сантиметровыми делениями. Нулевые отметки на обеих шкалах совмещены и находятся в центре стола. Деления с отметками простираются неограниченно далеко вправо, причем между отметками существует взаимно-однозначное соответствие: 0–0, 1–1, 2–2 и т. д. Сдвинем теперь одну из линеек на nсм вправо.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже