Читаем А ну-ка, догадайся! полностью

Обведите кружком любое число в матрице по своему усмотрению.

На рисунке обведено число 7, но вы можете выбрать другое число. Вычеркните все числа, которые стоят в одном столбце и в одной строке с обведенным числом.



Обведите кружком любое из невычеркнутых чисел и вычеркните числа, стоящие с ним в одной строке и в одном столбце. Обведите кружком любое из оставшихся чисел и вычеркните те числа, которые стоят с ним в одной строке в в одном столбце. Наконец обведите кружком единственное оставшееся число.



Если вы все сделали правильно, то ваша матрица выглядит примерно так, как показано на рисунке. Сложите числа, обведенные кружками. Как вы их выбирали, мне не известно.



Готово? А теперь я назову вам их сумму. У вас получилось число… минуточку!.. 34. Правильно? Как я отгадал» сколько у вас получилось? Может быть, я действительно умею читать ваши мысли?


Почему начерченная нами матрица заставляет вас всегда выбирать четыре числа, дающие в сумме 34? Секрет этой матрицы прост и изящен. Над каждым столбцом матрицы 4х4 выпишем числа 1, 2, 3, 4, а слева от каждой строки выпишем числа 0, 4, 8, 12;



Эти 8 чисел называются генераторами, или образующими, магической матрицы. В каждую клетку впишем число, равное сумме двух генераторов, стоящих у той строки и того столбца, на пересечении которых расположена клетка. Вписав все числа, мы получим матрицу, клетки которой перенумерованы по порядку числами от 1 до 16:



Посмотрим, что произойдет, если мы выберем 4 числа в соответствии с описанной выше процедурой.

Она гарантирует, что никакие два обведенные кружками числа не окажутся в одной строке или в одном столбце, а поскольку каждое число в клетке равно сумме единственной и неповторимой пары образующих, то сумма четырех обведенных кружками чисел равна сумме 8 генераторов, которая, как нетрудно подсчитать, равна 34. Следовательно, сумма четырех выбранных чисел также должна быть равна 34.

Поняв, как устроена магическая матрица 4х4, вы без труда построите магическую матрицу любого порядка. Рассмотрим, например, приводимую ниже матрицу 6-го порядка с 12 генераторами. Они выбраны так, что числа в клетках матрицы кажутся случайными. Это еще более маскирует закон, по которому выписаны числа матрицы и придает ей еще большую таинственность.



Сумма генераторов равна 30. Как бы ни выбирали в этой матрице 6 чисел, из которых никакие 2 не стоят в одной строке и в одном столбце, их сумма неизменно будет равна 30. Разумеется, эту сумму мы можем устанавливать по желанию.

Вы можете построить, например, магическую матрицу 10х10 с суммой генераторов, равной любому числу, которое покажется вам интересным, например «номер» текущего года или число лет, исполняющихся вашему доброму знакомому. Можно ли построить магические матрицы с отрицательными числами в некоторых клетках? Разумеется, можно.

Генератором магической матрицы может быть любое число, положительное или отрицательное, рациональное или иррациональное.

А можно ли построить магическую матрицу, в которой не сумма, а произведение выбранных чисел было бы равно заданному числу? Разумеется, можно, и это открывает перед нами еще одно направление исследований. Основная схема остается прежней, но нужное число равно не сумме, а произведению генераторов.

А что, если в клетки матрицы вписывать комплексные числа? И такое возможно, но мы предоставляем читателю разобраться в этом самостоятельно. Более подробные сведения о магических матрицах вы сможете почерпнуть в главе 2 («Фокусы с матрицами») моей книги «Математические головоломки и развлечения»[8]

.


Необычное завещание



Один адвокат, скопивший немалое состояние, собрал коллекцию из 11 старинных машин, каждую из которых знатоки оценивали примерно в 25 000 долларов.



После смерти адвокат оставил необычное завещание. По его воле 11 машин должны были быть разделены между 3 его сыновьями.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг