Последняя однозначная сумма и будет цифровом корнем исходного числа. Математики сказали бы, что цифровой корень сравним с исходным числом по модулю 9. Так как остаток от деления числа 9 на 9 равен 0, то в арифметике вычетов (остатков) по модулю 9 числа 9 и 0 эквивалентны.
До появления вычислительных машин арифметику вычетов по модулю 9 часто использовали для проверки сложения, вычитания, умножения и деления больших чисел. Пусть, например, мы вычитаем из числа А число В и находим разность С. Наши вычисления можно проверить: взять цифровой корень числа А, вычесть из него цифровой корень числа В и сравнить полученный результат с цифровым корнем разности С. Если вычисления произведены правильно, разность цифровых корней должна совпадать с цифровым корнем разности. Совпадение цифровых корней еще не говорит о правильности результата, но зато, если цифровые корни не совпадают, мы можем с уверенностью утверждать, что где-то в вычислениях допущена ошибка. Совпадение же цифровых корней лишь придает большую правдоподобность правильности вычислений. Аналогичным образом проверяются с помощью цифровых корней результаты выполнения сложения, умножения и деления.
Теперь уже нетрудно понять, на чем основан трюк с датами рождений. Пусть N — некоторое многозначное число. Переставив его цифры, мы получим новое число N'. Ясно, что N и N' имеют одинаковые цифровые корни. Следовательно, если мы вычтем один цифровой корень из другого, то разность будет равна 0, или 9, что то же в арифметике вычетов по модулю 9. Итак, число 0, или 9,— цифровой корень разности чисел N и N'. Следовательно, какое число мы бы ни взяли, переставив цифры и вычтя из большего числа меньшее, мы всегда получим разность с цифровым корнем, равным 0 (или 9).
Из способа вычисления цифровых корней видно, что окончательный результат, равный 0, получится только в том случае, когда числа N и N' совпадают.
Следовательно, демонстрируя трюк с вездесущей девяткой в датах рождения, необходимо следить за тем, чтобы при перестановках цифр возникали различные числа. Если числа N и N' не совпадают, то цифровой корень их разности равен 9.
Многие фокусы построены на вездесущей девятке. Например, попросите кого-нибудь из ваши друзей записать в тайне от вас (чтобы не видеть, вы можете повернуться спиной) номер денежной купюры, затем как угодно переставить цифры, вычесть из большего числа меньшее и, вычеркнув в полученной разности любую отличную от нуля цифру, назвать вразбивку в произвольном порядке остальные цифры. Даже не взглянув на полученный результат, вы без труда назовете зачеркнутую цифру!
Секрет фокуса очевиден. Разность имеет цифровой корень, равный 9. Когда ваш приятель называет одну за другой цифры, вы складываете их в уме, беря каждый раз лишь вычеты (остатки) по модулю 9. После того как будет названа последняя цифра, вы вычитаете полученный вами результат из 9 и узнаете, какая цифра была зачеркнута. (Если полученный вами результат равен 9, то была зачеркнут цифра 9.)
И трюк с датой рождения, и фокус с номером денежной купюры служат великолепным введением в арифметику вычетов, или, что то же, теорию сравнений.
В этом автобусе 40 юношей. Скоро они отправятся в спортивный лагерь «Окифиноки».
В этом автобусе 40 девушек. Они едут в тот же лагерь.
Перед тем как отправиться в рейс, водители автобусов зашли выпить по чашечке кофе.
Тем временем 10 юношей вышли из своего автобуса и пересели в автобус к девушкам.
Водитель автобуса, в котором ехали девушки, вернувшись, заметил, что пассажиров стало слишком много.
Водитель. Хватит валять дурака! В этом автобусе 40 мест, поэтому десяти из вас придется выйти. И, пожалуйста, поживее!
Десять пассажиров (юношей и девушек) вышли из автобуса и расположились на свободных местах того автобуса, в котором ехали юноши. Вскоре оба автобуса отправились в рейс. В каждом автобусе было по 40 пассажиров.
По дороге водитель того автобуса, в котором сначала были только девушки, принялся размышлять.