Читаем А ну-ка, догадайся! полностью

Вор. Все гениальное просто! Я могу без труда ежемесячно срывать куш в 500 долларов. Для этого мне достаточно ввести в компьютер программу, по которой счет каждого клиента будет округляться не до ближайшего целого числа пенни, а до пенни в сторону понижения.

Вор. Каждый клиент банка будет ежемесячно терять по полпенни.

Поскольку сумма эта невелика, потери никто не заметит. У банка около 100 000 клиентов, поэтому общая потеря составит 500 долларов. Их компьютер будет ежемесячно переводить на мой счет, а во всех банковских книгах баланс всегда будет сходиться.

Парадоксы с исчезновением фигур основаны на незаметном «похищении» небольших частей фигуры из разных мест. Так, если разрезать на части первый ковер мистера Рэнди и составить из них прямоугольник, то части будут находить друг на друга вдоль главной диагонали, образуя почти незаметный ромб.

Второй ковер мистера Рэнди, если разрезать его на части и составить из них новый ковер, чуть сокращается по высоте.

После того как компьютер переведет на счет вора 500 долларов, некоторые из клиентов банка получат на 1 пенни меньше процентов, чем им причиталось бы.

Тор наизнанку

Топологию иногда называют геометрией на резиновой поверхности, так как она занимается изучением свойств, не изменяющихся при непрерывных деформациях (изгибании, растяжении или сжатии) фигур.

Тор — замечательная поверхность, имеющая форму бублика. Должно быть, вы очень удивитесь, если вам скажут, что проделав в торе из тонкой резины дыру, можно вывернуть его наизнанку. Между тем это действительно возможно, хотя и весьма трудно.

Предположим, что мы приклеили одну ленту вдоль параллели еще не вывернутого тора изнутри, а другую — вдоль меридиана снаружи. Обе ленты не сцеплены.

Вот как выглядит тор после того, как его вывернули наизнанку. Однако что это? Ленты теперь сцеплены! Но два кольца невозможно сцепить, не разрезая и не склеивая хотя бы одно из них. Что-то здесь не так! Что именно?

Тор действительно можно вывернуть наизнанку через проделанное в нем отверстие, но ленты от этого не станут сцепленными. При выворачивании тора наружная и внутренняя ленты меняются местами.

После того как тор вывернут наизнанку, малая лента (меридиан) растягивается в большую (параллель), а большая сжимается в малую. Ленты по-прежнему остаются несцепленными. Объясняется кажущийся парадокс неожиданно просто: художник нарисовал вывернутый тор так, как подсказывала ему интуиция, а не так, как тот выглядит на самом деле.

Резиновую модель тора, например велосипедную камеру, нелегко вывернуть наизнанку через дырочку, так как камеру при этом необходимо очень сильно растягивать. Гораздо легче вывернуть тор, сделанный из мягкой ткани. Сложите квадратный кусок ткани пополам и сшейте края так, чтобы получилась трубка.

Согните трубку в кольцо и сшейте противоположные концы так, чтобы получился тор. В разглаженном виде такой тор будет иметь форму квадрата (сложенного в 4 раза исходного квадрата). «Дыру» следует прорезать по горизонтали в верхнем слое ткани, тогда вывернуть тор будет особенно легко.

Итак, вывернем тор наизнанку через прорезь. Размеры его от этого не изменятся, но прорезь из горизонтальной превратится в вертикальную. Рисунок ткани, если таковой имеется, также повернется на 90°. Иначе говоря, при выворачивании параллели тора превратятся в меридианы, а меридианы — в параллели.

Чтобы своими глазами убедиться в этом, начертите одним цветом параллель, а другим — меридиан.

После выворачивания тора наизнанку обе окружности поменяются местами.

Наглядно представить себе все этапы деформации тора при выворачивании его наизнанку нелегко.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги