Она изображена на рисунке Мориса Эшера «Бельведер». И невозможная лестница, и невозможный предмет с двумя или тремя зубьями, и сумасшедшая клеть показывают, как легко мы «попадаемся на удочку», считая изображенный на рисунке объект подлинным, хотя в действительности он логически противоречив и, следовательно, не может существовать. Невозможные объекты — своего рода визуальные аналоги таких неразрешимых утверждений, как «Это утверждение ложно», о которых говорилось в главе 1.
Другие примеры невозможных объектов приведены в главе, посвященной оптическим иллюзиям, моей книги «Математический цирк» и в книгах японского художника-графика
Эта извилистая ломаная, напоминающая по форме контур снежинки, не принадлежит к числу невозможных объектов, хотя и парадоксальна. Ее построение мы начнем с контура этой новогодней елки — равностороннего треугольника.
Разделив каждую сторону на 3 равные части, построим на каждой средней части равносторонний треугольник, лежащий снаружи от большого треугольника.
С каждым из меньших треугольников проделаем ту же операцию: разделим их. стороны на 3 равные части и на средних частях построим равносторонние треугольники.
Длина ломаной при этом еще больше возрастет, а сама ломаная станет похожа на шестиугольную снежинку.
С каждым разом ломаная будет становиться все длиннее и красивее.
Продолжая построение, мы можем сделать ломаную сколь угодно длинной. Она может умещаться на почтовой марке и все же быть длиннее, чем расстояние от Земли до самой далекой звезды!
Кривая-снежинка — один из красивейших представителей бесконечного множества кривых, названных
Кривая-снежинка — великолепный повод для того, чтобы освежить в вашей памяти все связанное с понятием предела. Можете ли вы доказать, что если площадь исходного равностороннего треугольника принять за единицу, то площадь части плоскости, заключенной внутри предельной кривой, равна 8/5?
Вот несколько задач на построение, тесно связанных с кривой-снежинкой.
1. Постройте кривую-антиснежинку: вычерчивая равносторонние треугольники, пристраивайте их не снаружи, а изнутри, после чего стирайте их основания. На первом этапе вы получите 3 ромба, соединенные в центре наподобие пропеллера. Имеет ли возникающая в пределе кривая-антиснежинка бесконечную длину? Конечна ли площадь ограничиваемой ею части плоскости?
2. Что произойдет, если за исходную фигуру принять не равносторонний треугольник, а какой-нибудь другой правильный многоугольник?
3. Что произойдет, если на каждой стороне строить по нескольку многоугольников?
4. Существуют ли трехмерные аналоги кривой снежинки и ее ближайших сородичей? Например, если на гранях тетраэдров строить тетраэдры, будет ли предельное тело иметь поверхность бесконечной площади? Будет ли его объем конечным?
В статье о патологических кривых, опубликованной в декабрьском номере журнала
О других патологических кривых, тесно связанных с кривой-снежинкой, рассказывается и в книге