Читаем А ну-ка, догадайся! полностью

Большинство людей с трудом верят, что «родственные узы», незримо связывающие, по их мнению, однотипные события, никак не сказываются на вероятности отдельного независимого события. Например, во время первой мировой войны солдаты на фронте во время артиллерийского обстрела предпочитали искать укрытие в свежих воронках от снарядов. Прятаться в старых воронках они считали рискованным, так как в них при очередном обстреле скорее может угодить новый снаряд. В свежей воронке солдаты какое-то время чувствовали себя в безопасности, так как считали совершенно невероятным, чтобы два снаряда попали подряд в одно и то же место.

Много лет назад рассказывали анекдот об одном человеке, которому приходилось много летать на самолетах. Панически боясь, как бы кто-нибудь из пассажиров не пронес тайком на борт самолета бомбу, этот человек имел обыкновение возить с собой в портфеле свою «собственную» бомбу, правда незаряженную. Вероятность того, что кто-то из пассажиров пронесет на борт одну бомбу, этот человек считал малой, а вероятность того, что на борту самолета одновременно находятся две бомбы, — ничтожно малой по сравнению с первой. Разумеется, вольно ему было возить с собой «собственную» бомбу: вероятность того, что кто-то другой пронесет бомбу на борт самолета, от этого ничуть не менялась, подобно тому как не меняется исход бросания одной монеты от того, что бросают другую монету.

При игре в рулетку наибольшей популярностью пользуется «система», известная под названием «система Д'Аламбера». В основе ее лежит все та же «ошибка игрока»: те, кто придерживается ее, совершенно упускают из виду, что независимые события независимы. Следуя системе Д'Аламбера, игрок делает ставку на красное или черное (или заключает пари с равными шансами на выигрыш и проигрыш), увеличивая ставку после каждого проигрыша и уменьшая после каждого выигрыша. Сторонники системы Д'Аламбера явно полагают, будто маленький шарик, брошенный на вращающееся колесо рулетки, каким-то образом «помнит», что помог им выиграть, и при следующем бросании менее охотно соглашается помочь им, уменьшая шансы на выигрыш. Если шарик приводит их к проигрышу, то из «сочувствия» при следующем бросании он охотнее идет на помощь проигравшему, повышая шансы на выигрыш.

То, что колесо рулетки каждый раз крутится независимо от всей предыстории, служит весьма простым доказательством невозможности разработать такую систему игры в рулетку, которая обеспечивала бы игроку преимущество перед игорным домом.

Слово «шансы» имеет два значения. Шансы на то, что брошенная не фальшивая монета упадет вверх «орлом» (или «решкой»), равные, или 1 к 1 (50 на 50 и т. д.). Стремясь извлечь прибыль, букмекер может принимать ставки на «орла» из расчета 4 к 5 (если вы поставите на «орла» 5 долларов и «орел» выпадает, то букмекер выплатит вам 4 доллара).

««Орел» идет 4 к 5», — заявляет букмекер, занижая истинные шансы на выигрыш. В своем «Полном руководстве по азартным играм» Джон Скарн характеризует подобную ситуацию следующим образом:

Если вы делаете ставку, которая ниже истинных шансов, а в любой организованной азартной игре дело обстоит именно так, то вы, по существу, уплачиваете оператору (банкомету, крупье и т. д.) определенный процент за право сделать ставку. Ваши шансы на выигрыш обладают, как сказали б и математики, «отрицательным математическим ожиданием».

Придерживаясь любой системы, вы делаете серию ставок, каждая из которых обладает отрицательным математическим ожиданием. Но сколько бы минусов вы ни суммировали, вам никогда не удастся получить плюс…

В постскриптуме к детективному рассказу «Тайна Мари Роже» Эдгар Аллан По сетует на почти полную невозможность убедить обычного читателя в том, что «при игре в кости двукратное выпадение шестерки делает почти невероятным выпадение ее в третий раз и дает все основания поставить против этого любую сумму». Игральная кость, так же как и монета, колесо рулетки и другие «рандомизирующие» устройства, порождает серию независимых событий: на исход очередного бросания никак не влияет вся предыдущая серия бросаний.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги