Посмотрим, какие противоречия возникают, если воспользоваться принципом безразличия при ответах на вопросы о жизни на Титане. Какова вероятность того, что на Титане есть жизнь? Применив принцип безразличия, мы получим, что эта вероятность равна 1/2. Какова вероятность того, что на Титане нет простейших растений? И на этот вопрос принцип безразличия дает ответ: 1/2. Какова вероятность того, что на Титане нет простейших животных? Ответ снова гласит: 1/2. А какова вероятность того, что на Титане нет ни простейших растений, ни простейших животных? По законам теории вероятностей мы должны умножить 1/2 на 1/2 и получить 1/4. Следовательно, вероятность того, что на Титане есть какая-то жизнь, повысилась до 3/4 вопреки прежней оценке, равной 1/2.
В приведенном выше примере к абсурдным результатам принцип безразличия приводит в сочетании с некоторым дополнительным допущением. Мы молчаливо предполагали, что события, заведомо не являющиеся независимыми, независимы. В свете теории эволюции вероятность существования разума на Титане зависит от существования на нем низших форм жизни.
Приведем еще один поучительный пример неосторожного применения принципа безразличия — парадокс со спрятанным кубом. Предположим, что вам сообщили: «В кладовке спрятан куб с длиной ребра от 2 до 4 см». Поскольку у вас нет оснований предполагать, что длина ребра куба меньше или больше 3 см, вам лучше всего принять ее равной 3 см. А каков объем спрятанного куба? Он должен быть заключен в пределах от 23 = 8 до 43 = 64 см3. Поскольку у вас нет оснований считать, что объем куба меньше или больше 36 см3, вам лучше всего принять его равным 36 см3. Иначе говоря, по вашим лучшим оценкам, ребро куба имеет длину 3 см, а объем куба составляет 36 см3. Странный какой-то куб, вы не находите?
Иначе говоря, применив принцип безразличия к оценке длины ребра спрятанного куба, вы получаете куб с длиной ребра 3 см и с объемом 27 см3. Применив тот же принцип к оценке объема куба, вы получите куб объемом 36 см3 и длиной ребра, равной (36)1/3 примерно = 3,30 см.
Парадокс с кубом — хорошая модель для демонстрации того, с какими трудностями могут столкнуться физик или статистик, оценивая некую величину по ее максимуму и минимуму и считая, что истинное значение величины, вероятнее всего, лежит посредине между максимумом и минимумом.
Принцип безразличия на вполне законном основании применяется в теории вероятностей, но лишь в тех случаях, когда симметрия ситуации служит объективным основанием для принятия гипотезы о равенстве вероятностей. Например, монета геометрически симметрична: между аверсом и реверсом монеты вы можете провести плоскость симметрии. Монета физически симметрична: ее плотность постоянна по всему объему, иначе говоря, ни лицевая, ни оборотная сторона не имеет перевеса. Силы, действующие на подброшенную монету в воздухе — сила тяжести, давление воздуха и т. д., — симметричны: они не выделяют ни одну из сторон. Следовательно, мы можем с полным основанием считать, что вероятности выпадения «орла» и «решки» равны. Аналогичные соображения симметрии применимы и к шести граням кубической игральной кости, и к 38 ямкам на колесе рулетки.
В каждом из этих случаев обширные эксперименты, проводившиеся в игорных домах и казино, показали правильность и пределы применимости соображений симметрии. В тех случаях, когда симметрия заранее не известна и может даже не существовать, применение принципа безразличия нередко приводит к абсурдным результатам.
5. СТАТИСТИКА
Парадоксы о сериях, воронах и зелубом цвете
Статистика, занимающаяся сбором, обработкой и анализом численной информации, приобретает все большее значение в сложном современном мире. На нас обрушиваются потоки информации — от сведений о состоянии экономики до оценок эффективности зубной пасты, и для того, чтобы разобраться в ворохе этих данных, необходимы хотя бы элементарные познания из области статистики. Без них современный человек не в состоянии принимать правильные решения. Трудно найти такую область науки, в которой статистика не играла бы жизненно важную роль, не говоря уже о неоценимых услугах, оказываемых статистикой таким областям человеческой деятельности, как страхование, здравоохранение, реклама и т. д.
Эту главу отнюдь не следует рассматривать как популярное введение в статистику. Прочитав ее, вы не усвоите даже ее элементарных основ. Перед вами выборка красочных парадоксов Буду рад, если, ознакомившись с ними, вы захотите узнать побольше об их математической подоплеке.
Открывается глава историей, в которой вводятся три фундаментальных понятия статистики: среднее, медиана и мода. За ней следуют несколько необычных примеров неправильного использования данных — великого искусства «лгать» с помощью статистики. Они должны насторожить вас и тем самым помочь вам избежать некоторых подводных камней, встречающихся на пути всякого, кому приходится пользоваться статистическими данными.