Читаем А ну-ка, догадайся! полностью

Чтобы развить такую среднюю скорость, лыжнику пришлось бы преодолеть вдвое большее расстояние (туда и обратно), чем он преодолел при подъеме, за то же время, которое он затратил на подъем. Следовательно, на спуск у нашего лыжника просто нет времени: он должен был бы преодолеть склон за нулевое время! Поскольку это невозможно, лыжник никаким способом не может поднять свою среднюю скорость с 5 до 10 км/ч, в чем вы без труда можете убедиться с помощью несложных вычислений.

Парадоксы Зенона

Древние греки придумали множество парадоксов о времени и о движении Парадокс Зенона о бегуне («стадий») принадлежит к числу наиболее известных.

Бегун в парадоксе Зенона рассуждал следующим образом.

Бегун. Прежде чем я добегу до финиша, мне необходимо пробежать половину дистанции, затем половину оставшейся половины, то есть 3/4 всей дистанции.

Бегун. Прежде чем я преодолею последнюю четверть дистанции, мне необходимо пробежать ее половину. И так всякий раз. Прежде чем преодолеть какое-то расстояние, мне необходимо пробежать половину его. Этим половинам не будет конца! Я никогда не доберусь до финиша!

Предположим, что на преодоление половины каждого расстояния бегун затрачивает 1 мин. На графике зависимости времени от пути видно, что бегун приближается к финишу, но так и не достигает его. Правильны ли рассуждения бегуна?

Нет, неправильны: бегун не затрачивает по 1 мин на преодоление половины каждого отрезка. Каждую половину очередного отрезка он пробегает за вдвое меньшее время, чем половину предыдущего отрезка. Бегун достигнет финиша через 2 мин после старта, хотя ему придется за эти 2 мин преодолеть бесконечно много половин соответствующих отрезков дистанции.

Зенону принадлежит и другой, не менее знаменитый парадокс об Ахилле и черепахе. Быстроногий Ахилл хочет поймать черепаху, которая находится на расстоянии 1 км от него.

К тому времени, когда Ахилл добегает до того места, где первоначально находилась черепаха, та успевает уползти вперед на 10 м.

За то время, которое требуется Ахиллу, чтобы пробежать эти 10 м, черепаха снова успевает уползти на какое-то расстояние.

Черепаха. Где тебе догнать меня, старина! Каждый раз, когда ты добежишь до того места, где я была, я успею уползти на какое-то расстояние вперед, хоть на толщину волоса!

Зенон, разумеется, знал, что Ахилл мог бы поймать черепаху. Свои парадоксы Зенон придумал для того, чтобы показать, к каким парадоксальным следствиям приводит представление о неделимых — «атомах» — пространства и времени, имеющих сколь угодно малые, но конечные размеры.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги