Корректное описание эксперимента с интерферометром состоит в том, что каждый фотон движется по обоим плечам интерферометра. Это и есть наш большой скачок. Одиночный фотон встречает полупрозрачное зеркало. Значит, с 50-процентной вероятностью фотон отразится и пойдёт по первому плечу интерферометра (см. рис. 5.1), а с 50-процентной вероятностью — по второму плечу. Это ошибка. Когда фотон встречает зеркало — разделитель пучка, — его состояние меняется. Если фотон действительно движется по первому плечу, назовём это состояние движения «трансляционным состоянием 1», сокращённо T
1. Если фотон движется по второму плечу, назовём это состояние движения «трансляционным состоянием 2», сокращённо T2. После взаимодействия фотона с разделителем пучка он не находится ни в состоянии T1, ни в состоянии T2. Состояние системы после разделителя пучка называют состоянием суперпозиции. Это смесь состояний T1 и T2 в равных пропорциях. В некотором смысле фотон одновременно находится в состояниях T1 и T2. Это звучит по-настоящему странно. Одиночный фотон находится в двух областях пространства одновременно. Он пребывает в трансляционном состоянии T=T1+T2 — суперпозиции, в которой поровну смешаны состояния T1 и T2.Фотон находится в этой суперпозиции трансляционных состояний T
=T1+T2, поскольку именно это о нём известно. Он с 50-процентной вероятностью находится в первом плече (T1) и с 50-процентной вероятностью — во втором (T2). Борновская интерпретация волновой функции заключается в том, что это не реальная волна в смысле амплитуды колеблющегося электромагнитного поля. Правильнее говорить, что волновая функция описывает «амплитуду вероятности волны». Ошибочная интерпретация волновой функции в терминах фотонов состоит в том, что она якобы говорит, сколько фотонов находится в каждом плече прибора, то есть сколько фотонов пребывает в некоторой области пространства. Правильная интерпретация состоит в том, что волновая функция фотона говорит о вероятности обнаружения фотона в этой области пространства.Может показаться, что различие между ошибочной и правильной интерпретациями незначительно, однако, как подробно объясняется далее, оно фундаментально меняет наше представления о природе. В классическом описании света его интенсивность пропорциональна абсолютному значению квадрата амплитуды электрического поля, которая, в свою очередь, задаётся амплитудой волновой функции. В борновской интерпретации возведённая в квадрат абсолютная величина волновой функции для определённой области пространства даёт вероятность обнаружения частицы, в нашем случае фотона, в этой области пространства.
Фотон интерферирует сам с собой
При попадании фотона на разделитель пучка рождаются две волны амплитуды вероятности: одна в первом плече, другая — во втором. В целом волна амплитуды вероятности T
является суперпозицией волн амплитуды вероятности T1 и T2. Встретившись с разделителем, каждый отдельный фотон попадает в состояние T1+T2. Поскольку за разделителем есть две волны амплитуды вероятности, они пересекаются в области перекрытия. С одиночным фотоном внутри интерферометра связаны две волны — T1 и T2. Интерференция этих двух волн определяет высокую вероятность обнаружить фотон вблизи пика интерференционной картины и низкую вероятность обнаружить фотон вблизи её нуля. Фотон интерферирует сам с собой, поскольку в интерферометре он состоит из двух волн, и эти две волны могут интерферировать друг с другом. Так как после прохождения разделителя пучка каждый отдельный фотон попадает в состояние суперпозиции T1+T2, снимается проблема, связанная с низкой интенсивностью света. Одиночный фотон, входя в прибор, порождает две волновые функции, две волны амплитуды вероятности в интерферометре. Поэтому всегда есть пара волн, порождающих интерференционную картину.Фотон может находиться в двух местах сразу
Первая естественная реакция человека с классическим мышлением на борновскую интерпретацию: «Это безумие какое-то!» Мы что, действительно верим, будто один фотон может находиться в двух местах сразу? После разделителя пучка порождается состояние T
1+T2. Это состояние означает, что в некотором смысле фотон одновременно находится в обоих плечах прибора. Если поместить детектор в плечо 1, чтобы посмотреть, сколько там света, то обнаружится, что туда прошла половина света. Однако это не та информация, которая нам нужна. Возможно, половина фотонов пошла по каждому плечу, и мы видим эту половину, или, возможно, имеется 50-процентная вероятность того, что каждый фотон прошёл в каждое плечо. В этом случае мы тоже увидим половинную интенсивность. Правильный эксперимент состоит в использовании настолько слабого света, что в каждый момент внутри прибора находится лишь один фотон.