Читаем Абсолютный минимум полностью

С помощью полупрозрачного зеркала фотон легко привести в состояние суперпозиции, представляющее собой смесь 50 на 50 двух трансляционных состояний. Когда фотон находится в состоянии суперпозиции, невозможно сказать, движется он по первому или по второму плечу прибора. Можно лишь сказать, что если мы выполним измерение, чтобы узнать, где фотон находится, это вызовет возмущение, которым невозможно пренебречь. Данное возмущение приведёт к тому, что состояние системы изменится, и, вместо того чтобы быть в обоих плечах интерферометра с равной вероятностью, фотон окажется либо в одном из них, либо в другом. Интерференционная картина рождается, когда волны амплитуды вероятности фотона интерферируют друг с другом. Две компоненты состояния суперпозиции — T1 и T2, из которых складывается совокупная волна амплитуды вероятности для фотона в приборе, — интерферируют друг с другом. Если выполняется наблюдение, позволяющее узнать, где находится фотон, он будет найден либо в первом, либо во втором плече интерферометра. Однако сам факт наблюдения меняет систему так, что она более не находится в состоянии суперпозиции. Амплитуда вероятности больше не состоит из двух частей, которые могут интерферировать друг с другом, и интерференционная картина исчезает. Таким образом, фотон в интерферометре — это реальное проявление идей, связанных с котами Шрёдингера.

Возвращаемся к фотоэлектрическому эффекту

В главе 4 фотоэлектрический эффект описывается в терминах фотонов, которые являются частицами, ведущими себя в некотором смысле наподобие световых пуль. Один фотон ударяет по одному электрону и выбивает его из куска металла (см. рис. 4.3). Это описание фотоэлектрического эффекта показывает, что классическое представление о свете как об электромагнитных волнах неверно. Для того чтобы объяснить фотоэлектрический эффект и одновременно тот факт, что фотоны порождают интерференционную картину, потребовалось ввести новую концепцию. Борновская интерпретация волновой функции как волны амплитуды вероятности придаёт фотону необходимые волноподобные характеристики, так что фотоны способны порождать интерференционную картину. Однако при обсуждении волн амплитуды вероятности в применении к интерферометру мы характеризовали положение фотона лишь с точностью до выбора одной из двух больших областей пространства; фотон находился в состоянии суперпозиции T1+T2 с равной вероятностью оказаться в первом или во втором плече интерферометра.

Фотоэлектрический эффект предполагает, что фотон весьма мал. В главе 6 будет показано, как суперпозиция волн амплитуды вероятности может породить фотон, имеющий очень маленькие размеры. Эти идеи приведут нас к центральному и самому неклассическому аспекту квантовой механики — принципу неопределённости Гейзенберга.

6. Размеры фотона и принцип неопределённости Гейзенберга

В главе 5 мы узнали, что фотон в интерферометре интерферирует сам с собой. Фотон в некотором смысле может находиться более чем в одном месте сразу. Положение фотона описывается волной амплитуды вероятности. Она не похожа на водяную, звуковую или даже классическую электромагнитную волну. Волна, ассоциируемая с фотоном (или с другими частицами вроде электронов), описывает вероятность обнаружения частицы в некоторой области пространства. В задаче с интерферометром (см. рис. 3.4 и 5.1) одиночный фотон находился одновременно в первом и во втором плечах прибора при равной вероятности обнаружить его в обеих этих областях пространства. Чтобы лучше понимать и описывать положение фотона, необходимо подробнее обсудить свойства волн. Нужно понять природу волн амплитуды вероятности, в особенности то, как они объединяются и что происходит, когда выполняются измерения.

Проще всего начать с задачи о свободной частице, которую мы обсуждали в главе 2. Свободная частица может быть фотоном, электроном или бейсбольным мячом. Свободной она является в том случае, если на неё не действуют никакие силы — нет ни гравитации, ни электрического или магнитного поля, ни фотонов, сталкивающихся с электроном, ни бейсбольных бит, ударяющих по мячу, ни сопротивления воздуха — ничего подобного. В отсутствие сил, действующих на частицу, она имеет строго определённый неизменный импульс. Таким образом, если она движется в определённом направлении, она будет просто продолжать двигаться в этом направлении. Можно выбрать для этого направления любое обозначение: пусть, например, это будет направление x. Представим себе график с горизонтальной осью x. Мы просто выберем направление этой оси x вдоль направления движения частицы. Обсуждая рис. 2.5, мы говорили о классической частице, движущейся вдоль оси x с классическим импульсом p. Здесь мы поговорим о квантовой частице с импульсом p.

Частицы имеют длину волны

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

История работорговли. Странствия невольничьих кораблей в Антлантике
История работорговли. Странствия невольничьих кораблей в Антлантике

Джордж Фрэнсис Доу, историк и собиратель древностей, автор многих книг о прошлом Америки, уверен, что в морской летописи не было более черных страниц, чем те, которые рассказывают о странствиях невольничьих кораблей. Все морские суда с трюмами, набитыми чернокожими рабами, захваченными во время племенных войн или похищенными в мирное время, направлялись от побережья Гвинейского залива в Вест-Индию, в американские колонии, ставшие Соединенными Штатами, где несчастных продавали или обменивали на самые разные товары. В книге собраны воспоминания судовых врачей, капитанов и пассажиров, а также письменные отчеты для парламентских комиссий по расследованию работорговли, дано описание ее коммерческой структуры.

Джордж Фрэнсис Доу

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Записки библиофила. Почему книги имеют власть над нами
Записки библиофила. Почему книги имеют власть над нами

В своем невероятно увлекательном повествовании профессор Оксфорда, специалист по Шекспиру Эмма Смит рассказывает об истории книг, многовековой и поразительно интересной, делая акцент не на привычном нам образе «архивов мудрости и знаний», а на материальных формах, в которых представали книги, и на том, насколько разным целям им порой приходилось служить.Представляя захватывающую и радикально новую историю книги в руках человека, автор ищет ответ на вопросы, когда и как та приобрела власть над нами. Рассказывая о той огромной роли, которую целое тысячелетие играли в жизни людей книги, Смит делает удивительное открытие о том, что характерную и весьма могущественную магию книг рождает не только содержание, но и форма. От Алмазной сутры до книги, сделанной из завернутых в целлофан ломтиков сыра, этот сложный художественный объект уже много веков вмещает в себя и расширяет взаимоотношения между читателями, странами, идеологиями и культурами, и делает это очень решительно и непредсказуемо.«Любая книга сулит читателю трансформацию. Ожидание перемен входит в незримый договор между книгами и их читателями. В этом смысле все книги – это книги о том, как помочь самому себе. Если у нас нет удовольствия или связи с какой-нибудь книгой, значит, мы упорно уклоняемся от обязанностей, которые должны выполнять по договору с ней». (Эмма Смит)

Эмма Смит

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература