Автор полагает, что однозначная причинность выступает в роли важной абстракции, идеализации. Ее, однако, нельзя, называть лишь условной формой выражения всемирной связи явлений, как это иногда делается [36]. Напротив, такая идеализация не является беспочвенной, и именно потому она играла и играет столь существенную роль в научном познании. В качестве примера можно указать на применимость к широкому кругу материальных объектов абстракций «абсолютно изолированной системы» и «абсолютно точного измерения начальных условий и параметров системы».
Вместе с тем учет гносеологической природы понятий детерминизма и причинности, т.е. их связи с познавательными задачами определенного рода, позволяет характеризовать однозначную причинность как способ выделения упрощенной формы детерминации, связанной с чрезвычайно сильными идеализациями, образцы которых демонстрируют классическая физика, классическая механика, термодинамика и т.д.
Новый тип познавательных задач, выдвигающийся в настоящее время на передний план, имеет дело с богатым уровнем сложности. Их решение прямо связано с отказом от ряда допущений названной формы детерминации (учет всех существенных причин, неограниченная точность фиксации условий и др.) и в силу этого выходит за ее пределы.
Для этого случая решающее значение приобрело истолкование детерминизма с позиций единства определенности и неопределенности. Такого рода единство находит свое выражение, например, в категории «возможность», органически входящей в рамки обобщенной концепции детерминизма. На базе этой категории признается связь, скажем, результатов с воздействиями, однако она приобретает характер некоторой возможностной области. Причем важно, что границы этой сферы возможности имеют достаточно четкие и определенные контуры. Например, при задании ряда граничных условий, обеспечивающих нормальный выстрел из артиллерийского орудия, более или менее четко определяется сектор обстрела в соответствии с законами механики. Вообще же конкретизация общей необходимости налагает границы на область возможностей.
Здесь автор выступает за сохранение детерминизма в описании сложных ситуаций, что потребовало выработки средств учета неопределенности и неоднозначности одного уровня сложности системы по отношении к другому. Формализованный подход к решению данной задачи связан с реализацией идеи функции множеств. К числу таковых относится вероятность, истолковываемая в математическом плане как функция, которой становится в соответствии некоторая мера пересечения двух множеств, ограниченная значениями 0 и 1.
С качественной стороны подобный подход к анализу и описанию сложной детерминации может быть охарактеризован как отказ от поэлементного рассмотрения совокупности детерминирующих факторов, что составляет центральное содержание современного системного подхода.
Хотя надо добавить, что отказ от поэлементного анализа в рамках системного подхода не является абсолютным (и это подчеркивается уже в определении понятия «система»). Напротив, так или иначе, учитываются особенности элементов, но на более глубоком и абстрактном уровне, чем при традиционном рассмотрении (например, посредством фиксации их разнообразия). Важно также, что в рамках системных характеристик осуществляется учет, как внутреннего разнообразия системы, так и внешнего разнообразия воздействий. А это служит основанием для применения много-многозначной формы детерминации.
В данном случае складывается иная ситуация, чем в классической области, поскольку в последней неопределенность лежала просто за пределами точности измерения и отвлечение от неточностей не оказывало значимого влияния на характер детерминации (не искажало ее однозначности). В сложных же системах имеют дело с тем случаем, когда от воздействий нельзя отвлечься.