Именно такой принцип мышления привел А. В. Шубникова к успеху, ведь недаром считается, что симметрия — это метод мышления, а не просто набор групп преобразований. В той же статье автор пишет (рис. 1): «Мы определили выше материальную фигуру как геометрическую фигуру плюс свойство; приписав геометрической фигуре свойство знака, мы приходим к представлению о фигуре полярной — такой фигуре, которая может быть в зависимости от обстоятельств положительной или отрицательной... Понятием полярной фигуры также успешно пользовались до сих пор, не употребляя самого термина, например, в теории поля и векторном исчислении под именем источников и стоков, но в учение о симметрии оно вводится нами впервые... Вводя понятие полярной фигуры, мы уже в силу логической необходимости должны ввести и понятие нейтральной фигуры — фигуры, знака не имеющей, или, формально говоря, фигуры одновременно положительной и отрицательной... Необходимо указать еще на возможность существования фигур смешанной полярности, то есть фигур, которые состоят из положительных и отрицательных частей» [148, с. 216]. Далее автор пишет: «Подобно тому, как правая фигура может быть равна левой, так, по нашему предположению, положительная фигура может быть равна отрицательной. Это вид равенства назовем противоположным равенством или антиравенством. Так как антиравные фигуры должны быть в то же время зеркально, совместимо или одновременно зеркально и совместимо равны друг другу, то следует различать: зеркальное, совместимое, а также двойное (совместимо-зеркальное) антиравенство фигур» [148, с. 217, 218]. В своей работе А. В. Шубников вводит новые симметричные преобразования: «...все новые симметрические преобразования должны иметь в качестве составного элемента операцию перемены знака фигуры... Новым операциям мы дадим старые названия с добавлением приставки анти и будем, следовательно, говорить об антивращении, антиотражении, зеркальном антивращении и т. д.» [148, с. 222]. Здесь начало всей теории антисимметрии. Однако А. В. Шубников в этой статье наметил не только контуры теории антисимметрии, но и кратной антисимметрии. Действительно: «Если материальную фигуру со знаками (или знаком) одного сорта позволительно рассматривать как четырехмерную фигуру особого рода, то есть как фигуру, в которой интересен лишь знак четвертой координаты, а не ее абсолютная величина, то фигуру со знаками двух сортов следует уже рассматривать как фигуру пяти измерений. Ясно, что принципиально можно идти и далее в этом направлении, и тогда абстрактная материальная фигура, долженствующая отображать действительность по необходимости не полно, представится нам снабженной множеством разнообразных этикеток плюсов и минусов, напоминая собой облепленный всевозможными ярлыками чемодан путешественника, изображающий также несовершенно, однако более совершенно, чем чемодан без ярлыков, историю поведения своего хозяина» [148, с. 219].
В заключении, которое мы приведем почти полностью, поскольку в нем четко сформулированы задачи учения о симметрии, достигнутые успехи и перспективы развития, автор говорит: «Задача усовершенствования учения о симметрии, которую мы себе ставим, задача, целиком основанная на операции перемены знака фигуры, с математической точки зрения, очевидно, сводится к выводу и исследованию всех групп симметрии (групп ортогональных преобразований) трехмерных фигур в четырехмерном пространстве. С точки зрения естествоиспытателя она сводится к интерпретации этих групп материальными трехмерными фигурами, к изображению и объяснению с их помощью известных явлений природы и предвидению новых.
Часть этой проблемы нами уже решена. Нами выведены все группы симметрии конечных кристаллографических материальных фигур, то есть все точечные группы фигур, удовлетворяющих закону рациональности параметров. Общее их число оказалось равным 122. Из них... 58 групп относятся к фигурам смешанной полярности. Далее мы установили 17 точечных групп с бесконечными осями. Эти группы, хотя и не относятся к кристаллографическим в узком смысле, но играют в кристаллографии громадную роль и должны, по нашему мнению, найти полезное применение во многих вопросах физики.
В настоящее время мы заняты вопросом выявления на основе новых представлений всего многообразия простых форм. Самая важная и трудоемкая задача — задача использования пространственных групп, которая должна с наибольшей полнотой осветить проблему структуры кристаллов, пока еще совсем не начата. Впереди маячат и другие важные проблемы симметрии, совсем не задетые в нашем обзоре: проблема диссимметрии, проблема материальных фигур многообразной полярности и т. д. Для нас ясно, что учение о симметрии отнюдь не может считаться законченной областью знания: оно будет жить и развиваться вместе с наукой в целом, с естествознанием в особенности и с его составной частью — кристаллографией» [148, с. 227].