Читаем Алексей Васильевич Шубников (1887—1970) полностью

Наборы геометрических преобразований, положенные в основу ортогональной симметрии, не исчерпывают всего множества возможных типов симметрии. История математики показывает, что уже в трудах Архимеда и Аполлония появились геометрические преобразования сжатия «к прямой» (растяжение «от прямой»). Современное «родство» и сжатие или растяжение от точки (гомотетия) лежат в основе аффинной геометрии. Отметим попутно, что, помимо преобразования гомотетии, Аполлоний вводит и преобразование инверсии относительно окружности (одно из конформных преобразований, по современной терминологии). Александрийский математик Папп (III в. н. э.) в «Математическом собрании» описывает гомотетию и инверсию и их комбинации с движениями плоскости, в том числе переносом и поворотом. Симметрия подобия, наряду с гомологией, является частным случаем аффинных преобразований. Проследим генезис этих преобразований вплоть до их окончательного оформления в трудах по геометрии, с одной стороны, и формулировки самого понятия «симметрия подобия» в работе А. В. Шубникова [247].

Эквиаффинные преобразования, сохраняющие площади (объемы) фигур, впервые ввел в науку Сабита Ибн Корра в «Книге о сечениях цилиндра в его поверхности», что, видимо, является начальной точкой отсчета для гомологии, намного позднее развитой в ее «симметрийной» интерпретации в трудах В. И. Михеева и П. А. Заболотного, хота некоторые соображения по этому поводу содержатся в «Курсе кристаллографии» Е. С. Федорова (видимая симметрия), итальянского ученого Виолы (гармония) и А. В. Шубникова [158].

Наибольший вклад в современную тематику внес., разумеется, Л. Эйлер, хотя аффинные преобразования общего вида у европейских математиков впервые появляются у А. К. Кле,ро. Во втором томе «Введения в анализ бесконечных» Л. Эйлер фактически дает набор движений на плоскости, вводит понятие оси симметрии, описывает перенос, поворот, отражение от прямой и скользящее отражение. В другой работе Эйлером введено понятие косого отражения, косого растяжения. Им же доказана важнейшая теорема симметрии подобия — преобразование подобия всегда обладает неподвижной точкой.

К началу XX в. аффинная геометрия [* Термин «аффинная симметрия» впервые использован в статье: Заморзаев А. М. Развитие новых идей в федоровском учении о симметрии за последние десятилетия. — В кн.: Идеи Е. С. Федорова в современной кристаллографии и минералогии. Л.: Наука, 1974, с. 42—64.] полностью сформировалась, однако термин «симметрия подобия» появился только в работе А. В. Шубникова [247]. С другой стороны, в неявной форме симметрией подобия, распространенной в растительном и животном мире, давно и детально занимались ботаники. Как отмечает А. В. Шубников [343], со времен Ш. Бонне (XVIII в.) понятие филлотаксиса вошло в употребление в естествознании, хотя под несколько иным углом зрения этим занимались еще Леонардо да Винчи и Лука Паччоли, исследуя золотое сечение. Одна из наиболее интересных работ в этой области принадлежит братьям Браве, один из которых был ботаником, а второй — кристаллографом. Поскольку законы «геометрического мышления» едины, в этой работе соавторы, видимо, благодаря О. Браве, наиболее близко подошли к тому, что можно было бы определить как симметрию подобия, но не назвали ее. Довольно большое число работ конца XIX—начала XX в. посвящено близкой тематике: аддитивным рядам, биологической «симметрии», декоративному искусству и т. п., однако ни в одной из них явственно не прозвучал единственно правильный акцент в определениях преобразований, позволяющий говорить о «симметрии подобия».

Генетически работа А. В. Шубникова [247] связана с небольшой книжкой Г. В. Вульфа «Симметрия и ее проявление в природе», в которой без определения симметрии подобия большое внимание уделено симметрии растений. О том, как работа А. В. Шубникова была встречена научной общественностью, И. И. Шафрановский пишет: «В августе 1960 г. в Кембридже проходил 5-й Международный конгресс кристаллографов, участником которого был А. В. Шубников. Журнал „Кристаллография" посвятил конгрессу специальный выпуск, открывающийся статьей А. В. Шубникова „Симметрия подобия". Алексей Васильевич придавал большое' значение этой долго им вынашиваемой и тщательно оформленной работе. Его слегка опечалило то, что высказанная им идея о совершенно новом аспекте симметрии, имеющем повсеместное распространение в природе, не встретила тогда широкого отклика и достойной оценки со стороны участников конгресса» [Л. 57, с. 394]. Следует сказать, что эту идею сразу же взяли на вооружение кишиневские геометры, фактически завершившие всю теорию симметрии подобия.

Свою теорию симметрии подобия А. В. Шубников основывает на утверждении, что в рамках симметрии подобия равными считаются не только действительно равные фигуры, но и все подобные им. Им вводятся все основные виды операций, осуществляемых в рамках симметрии подобия.

Рис. 2. Фигура, имеющая симметрию подобия.


Перейти на страницу:

Все книги серии Научно-биографическая литература

Похожие книги