А вообще, если невозможно существование бесконечного места, а всякое тело находится в каком-то месте, то невозможно и существование какого-либо бесконечного тела. Но «где-нибудь» означает в [каком-то] месте, и то, что [находится] в месте, [находится] где-нибудь. Следовательно, если никакое количество не может быть бесконечным, так как количество есть нечто определенное, например [длиной] в два локтя или три локтя (ведь это означает количество), то таким же образом [бесконечным не будет] то, что [находится] в месте, потому что оно «где-нибудь», а это значит вверху, или внизу, или в каком-либо ином из шести направлений, а каждое из них есть некоторый предел.
Итак, что не может быть актуально бесконечного тела, ясно из сказанного.
Глава шестая
А что много невозможного получается, если вообще отрицать существование бесконечного, – [это тоже] очевидно. Тогда и для времени будет какое-то начало и конец, и величины не [смогут быть] делимы на величины, и численный ряд не будет бесконечным. Когда при таком положении дела начинает казаться, что ни одно [из решений] неприемлемо, возникает нужда в третейском судье, и [в конце концов] становится очевидным, что в каком-то смысле [бесконечное] существует, а в другом же нет.
В самом деле, о бытии можно говорить либо в возможности, либо в действительности, а бесконечное получается либо прибавлением, либо отнятием. Что величина не может быть бесконечной актуально, об этом уже сказано, но она может быть [беспредельно] делимой (так как нетрудно опровергнуть [учение] о неделимых линиях[20]
); остается, таким образом, бесконечное в возможности. Не следует, однако, понимать бытие [бесконечного] в возможности [в том смысле], что как вот этот [материал] есть статуя в возможности, поскольку он [на деле] может стать статуей, то так же может стать актуально существующим какое-нибудь бесконечное; но так как «существование» имеет много значений, то и бесконечное может существовать так, как существует день или как состязание – в том смысле, что оно становится всегда иным и иным. Ведь и они, [день и состязание], существуют и в возможности и в действительности: олимпийские игры существуют и как возможное наступление состязаний, и как наступившее. Что касается бесконечного, то очевидно, что оно различно и для времени, и в отношении людей, и в отношении деления величин. Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, а взятое всегда бывает конечным, но всегда разным и разным. Так что бесконечное не следует брать как определенный предмет, например как человека или дом, а в том смысле, как говорится о дне или состязании, бытие которых не есть какая-либо сущность, а всегда находится в возникновении и уничтожении, и хотя оно конечно, но всегда разное и разное. Притом для величины это происходит с сохранением взятого, для времени и людей – вместе с их уничтожением, так, однако, чтобы [последовательность возникновений] не прекращалась.