Читаем Аналитики. Никомахова этика полностью

Бесконечное путем прибавления в некотором смысле есть то же самое, что и [бесконечное] путем деления, а именно: путем прибавления с конечной величиной происходит обратное; в какой мере она при делении очевидным образом идет к бесконечности, в такой же при прибавлении она будет казаться идущей к определенной [величине]. Если, взявши от конечной величины определенную часть, прибавлять [к ней дальнейшие части, находящиеся друг к другу] в одинаковом отношении, но [только] не прибавлять повторно ту же самую часть целого, то [исходную] конечную величину нельзя будет пройти [до конца]; если же настолько увеличить отношение, чтобы прибавлять все время одну и ту же величину, то пройти можно, так как всякую конечную величину [всегда] можно исчерпать любой определенной величиной. Иным образом бесконечного нет; оно существует лишь так – в возможности и при уменьшении (в действительности же [бесконечное] существует в том смысле, в каком мы говорим о дне и состязании), причем в возможности – в смысле материи, и не само по себе, как [существует] конечная величина. И бесконечное путем прибавления, которое мы назвали в некотором смысле тождественным бесконечному путем деления, существует в возможности таким же образом, так как вне его всегда можно что-нибудь взять. Однако оно не превзойдет любой определенной величины, как превосходит бесконечное путем деления всякую определенную величину, меньше которой оно всегда [в конце концов] будет. Таким образом, превзойти всякую величину путем прибавления нельзя даже в возможности, если только не существует бесконечного в действительности в смысле свойства [какого-то тела], как говорят физиологи, утверждающие, что тело вне космоса, сущность которого – воздух или что-нибудь подобное, бесконечно. Но если невозможно, чтобы таким образом существовало бесконечное в действительности чувственно-воспринимаемое тело, то очевидно, что путем прибавления оно не будет бесконечным и в возможности, а только, как сказано, в обратном отношении к делению. Хотя Платон именно поэтому допустил две бесконечности: [во-первых], при увеличении, так как он полагал, что [таким образом] можно превзойти [любую величину] и идти до бесконечности, и, [во-вторых], при уменьшении, однако, допустив две, он ими не пользуется: ведь числам у него не свойственна бесконечность ни при уменьшении, так как единица – наименьшее [число], ни при увеличении, так как числа доходят у него [только] до десяти.

Выходит, что бесконечное противоположно тому, что [о нем обычно] говорят: не то, вне чего ничего нет, а то, вне чего всегда есть что-нибудь, то и есть бесконечное. Вот пример: ведь и кольца, не имеющие камня, называют бесконечными, так как всегда можно взять какую-нибудь часть, лежащую дальше, [чем предыдущая]; однако так говорится по некоторому сходству, но не в собственном смысле; ибо и только что сказанное должно иметь место, и никогда нельзя брать одного и того же; в круге же это происходит не так, а только непосредственно следующее оказывается всегда другим. Итак, бесконечное есть там, где, беря некоторое количество, всегда можно взять что-нибудь за ним. А где вне ничего нет – это законченное и целое. Ведь мы так и определяем целое: это то, у которого ничто не отсутствует; например, целое – это человек или сундук. Но каково значение целого в частных случаях, таково и его собственное значение, а именно целое то, вне чего ничего нет, а то, у чего нечто отсутствует, будучи вне его, уже не все, как бы мало ни было это отсутствующее. Целое и законченное или совершенно тождественны друг другу, или родственны по природе: законченным не может быть не имеющее конца, конец же – граница.

Поэтому следует думать, что Парменид сказал лучше Мелисса: последний говорит, что целое бесконечно, а Парменид – что целое «ограничено на равном расстоянии от центра». Ведь нельзя, как нитку к нитке, привязывать к Вселенной и к целому бесконечность; ведь такую важность они придают бесконечному именно потому, что оно «все объемлет» и «все заключает в себе», так как имеет некоторое сходство с целым. Но бесконечное есть материя для завершенности величины, и целое только в возможности, а не в действительности; оно делимо и при уменьшении и обратном прибавлении, а целым и ограниченным [бесконечное] оказывается не само по себе, а по отношению к другому; и поскольку оно бесконечно, оно не охватывает, а охватывается. Поэтому оно и непознаваемо, как бесконечное, ибо материя [как таковая] не имеет формы. Таким образом, ясно, что бесконечное скорее подходит под определение части, чем целого, так как материя есть часть целого, как медь для медной статуи. Если же оно охватывает чувственно-воспринимаемые предметы, то и в области умопостигаемого «большое» и «малое» должны охватывать умопостигаемые [идеи]; но нелепо и невозможно, чтобы непознаваемое и неопределенное охватывало и определяло.

Глава седьмая

Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература