Следовательно, (выражения) "(приписывается) всем" и "само по себе" надо определять таким (именно) образом. "Общим" же я называю то, что присуще всем и (есть) само по себе и поскольку оно есть то, что оно есть. Очевидно поэтому, что все, что есть общее, присуще вещам необходимо. "Само по себе" и "поскольку оно есть то, что оно есть", означают одно и то же. Как, например, точка и прямая сами по себе присущи линии, ибо они присущи, поскольку (линия) есть линия. Точно так же треугольнику, поскольку он треугольник, присущи (в сумме) два прямых (угла), ибо сам по себе треугольник[758]
(в сумме) равен двум прямым. Общее же присуще тогда, когда оно доказывается относительно любого и первичного, например, иметь (в сумме) два прямых (угла) не присуще (всякой) фигуре вообще, ибо хотя относительно (некоторой) фигуры и можно доказать, что она имеет (в сумме) два прямых (угла), однако не относительно любой фигуры; и тот, кто доказывает, не пользуется любой фигурой. В самом деле, четырехугольник есть фигура, однако (сумма) его углов не равна двум прямым. Любой же равнобедренный треугольник имеет (сумму) углов, равную двум прямым, однако не первично, так как раньше это имеет треугольник (вообще). Следовательно, что касается того, о чем, как о любом и первичном, доказывается, что оно имеет два прямых угла или что-либо другое, то этому первичному присуще общее, и доказательство этого само по себе есть (доказательство) общего; (доказательство) же другого есть каким-то образом (доказательство) не само по себе, и доказательство общего дается не относительно равнобедренного треугольника, а (простирается) на большее.ГЛАВА ПЯТАЯ (Ошибки в доказательстве первично общего)