Читаем Аналитики. Первая и Вторая полностью

Так как во всяком роде необходимо присущим является то, что присуще само по себе, и поскольку каждый (род) есть (то, что он есть), то очевидно, что доказательства, дающие знание, бывают о том, что присуще само по себе, и основаны на этом[778]. Случайное же не есть необходимое. Так что не необходимо (при силлогизмах о случайном) знать, почему присуще то, о чем выводится заключение, даже и в том случае, если бы оно всегда было, но не само по себе, каковы силлогизмы, (выведенные) из (внешних) признаков. Ибо о том, что есть само по себе, будут (в таком случае) знать не (как о существующем) само по себе и не будут знать, почему (оно есть). Знать же почему (что-нибудь) есть, — это то же самое, что знать через причину. Вот почему и средний (термин) должен быть сам по себе присущ третьему и первый — среднему[779].

ГЛАВА СЕДЬМАЯ (Недопустимость перехода доказательства из одного рода в другой)

Нельзя, следовательно, вести доказательство так, чтобы из одного рода переходить в другой, как, например, нельзя геометрическое положение доказать при помощи арифметики. Ибо в доказательствах различают три (стороны): во-первых, доказываемое, (то есть) заключение, — то, что какому-нибудь роду (предметов) присуще само по себе; во-вторых, основные положения, (то есть) те положения, на основании которых (ведется доказательство); в-третьих, род в качестве подлежащего, состояния которого и его случайные (признаки), сами по себе присущие ему, раскрывает доказательство. Следовательно, (положения), на основании которых ведется доказательство, могут быть одними и теми же, но в (науках), род которых различен, как, например, (род) арифметики и геометрии, не годится арифметическое доказательство для случайных (свойств) величин, если только (эти) величины не являются числами. А как это возможно в отношении некоторых (величин), об этом будет сказано позднее[780]. Но арифметическое доказательство всегда имеет дело с тем родом, относительно которого ведется (это) доказательство. И так же обстоит дело с другими (доказательствами). Так что если доказательство должно быть перенесено[781], то род (предметов) должен быть или безусловно тем же или в каком-то отношении (тем же). Ясно, что иначе быть не может, ибо и крайние и средние (термины) необходимо должны быть из одного и того же рода. Если же они сами по себе (не таковы), то они будут случайными (признаками)[782]. Ввиду этого посредством геометрии нельзя доказать, что противные друг другу (вещи) изучаются одной и той же наукой и что два куба составляют один куб[783]; (вообще) нельзя доказать посредством одной науки (положения) другой, за исключением тех (случаев), когда (науки) так относятся друг к другу, что одна подчинена другой, каково, например, отношение оптики к геометрии и гармонии — к арифметике. Нельзя (доказывать посредством геометрии и тогда), когда нечто присуще линиям не поскольку они суть линии и не поскольку оно (вытекает) из свойственных им начал, как, например, когда прямая линия есть самая красивая из линий или когда она находится в противоположном к окружности положении, ибо (эти признаки) присущи (линиям) не как свойственные их[784] роду, но как нечто общее (и с другими предметами).

ГЛАВА ВОСЬМАЯ (Заключения о непреходящем)

Очевидно также, что если посылки, из которых (состоит) силлогизм, общие, то необходимо, чтобы непреходящим было и заключение такого рода доказательства и, (надо) сказать, доказательства вообще. Следовательно, о преходящем нет ни доказательства, ни безусловного знания, но лишь (нечто) вроде случайного (знания), ибо (последнее) не есть (знание) о самом общем, а лишь — временное и в некотором отношении. Но если (доказательство) именно такое[785], то необходимо, чтобы одна из посылок была не общей и о преходящем: о преходящем — потому, что если она (об этом), то (об этом) же будет и заключение; не общей — потому, что одному из них[786] (нечто) будет (присуще), другому — не будет, так что и нельзя вывести общее заключение, а только для данного времени. Подобным же образом обстоит дело и с определениями, ведь определение есть или начало доказательства, или доказательство, отличающееся (от других лишь) по положению (терминов)[787], или некоторое заключение доказательства. Что же касается доказательств и наук о часто случающемся, как, например, о лунном затмении, то очевидно, что, поскольку они являются таковыми, они всегда (одни и те же); поскольку же они не всегда (одни и те же), они являются частными[788]. Так же как с лунным затмением, точно так же обстоит дело и с другими (явлениями этого рода).

ГЛАВА ДЕВЯТАЯ (Необходимость ведения доказательства из начал, свойственных доказываемому предмету)

Перейти на страницу:

Похожие книги

Актуальность прекрасного
Актуальность прекрасного

В сборнике представлены работы крупнейшего из философов XX века — Ганса Георга Гадамера (род. в 1900 г.). Гадамер — глава одного из ведущих направлений современного философствования — герменевтики. Его труды неоднократно переиздавались и переведены на многие европейские языки. Гадамер является также всемирно признанным авторитетом в области классической филологии и эстетики. Сборник отражает как общефилософскую, так и конкретно-научную стороны творчества Гадамера, включая его статьи о живописи, театре и литературе. Практически все работы, охватывающие период с 1943 по 1977 год, публикуются на русском языке впервые. Книга открывается Вступительным словом автора, написанным специально для данного издания.Рассчитана на философов, искусствоведов, а также на всех читателей, интересующихся проблемами теории и истории культуры.

Ганс Георг Гадамер

Философия