Читаем Аналитики. Первая и Вторая полностью

Так как очевидно, что каждая вещь может быть доказана не иначе, как из свойственных ей начал, (то есть) тогда, когда доказываемое присуще вещи как таковой, то (без этих начал) нельзя это (доказываемое) знать, если даже доказательство ведется из истинных, недоказуемых и неопосредствованных (положений), ибо (тогда) доказывать можно было бы и так, как Брисон[789] (доказывал) квадратуру (круга), ибо такого рода положения доказывают посредством чего-то общего, что будет присуще и другому. Поэтому эти положения будут применимы и к вещам, (принадлежащим) к другому роду. В таком случае данную (вещь) знают не как таковую[790], а случайным образом, иначе доказательство не было бы применимо также и к другому роду (предметов).

Каждую же (вещь) мы тогда знаем не случайным образом, когда мы по тому, в силу чего (нечто ей) присуще, познаем (ее) из начал, свойственных (ей) как таковой. Так, например, что (нечто) имеет углы, равные (в сумме) двум прямым, мы познаем из начал того, чему сказанное присуще само по себе. Так что, если то, что присуще данной (вещи), присуще ей само по себе, тогда необходимо, чтобы средний (термин)[791] принадлежал к тому же самому роду, что и (крайние)[792]. В противном случае дело будет обстоять так же, как при доказательстве (положений) гармонии посредством арифметики. Такого рода положения, хотя и доказываются одинаково, но все же различаются. В самом деле, (положение), что (данная вещь) есть (такая-то), относится к иной науке, ибо иным является данный род. Но (положение), почему (она) есть (такая-то), относится к (некоторой) высшей (науке), определения которой имеют основание сами по себе[793]. Таким-образом, и отсюда очевидно, что каждую (вещь) можно доказывать не безусловно, а только из свойственных ей начал. Однако начала этих (наук) содержат нечто общее (им всем).

Но если это очевидно, то очевидно также и то, что нельзя доказать начала, свойственные каждой отдельной (вещи), ибо они будут началами всего и наука о них будет среди всех (наук) самой главной. И в самом деле: тот, кто знает (что-нибудь) из высших причин, знает это в большей степени, ибо он знает ведь из предшествующего, если имеет знание из причин, не имеющих причин. Так что, если он знает в большей степени, то и в высшей степени. И если есть то знание[794], то это будет знанием в большей и в высшей степени. Но доказательство не применимо к другому роду, разве только тогда, когда, как было сказано: геометрические (доказательства применяются) к (положениям) механики или оптики, а арифметические — к (положениям) гармонии.

Трудно, однако, узнать, знаем ли мы или нет, ибо трудно узнать, знаем ли мы из (свойственных) каждой вещи начал или нет, а в этом как раз и состоит знание. Думаем же мы, что знаем, если у нас имеется силлогизм из каких-либо истинных и первичных (положений). Это, однако, не так; необходимо же, чтобы (выводимое) было однородным с первичными (положениями).

ГЛАВА ДЕСЯТАЯ (Определение начал. Предположение, постулат и определение)

Началами же в каждом роде я называю то, относительно чего не может быть доказано, что оно есть. Следовательно, то, что обозначает первичное и из него вытекающее, принимается. Существование начал необходимо принять, другое — следует доказать. Например, что такое единица или что такое прямое и что такое треугольник (следует принять); что единица и величина существуют, также следует принять, другое — доказать.

Из тех (начал), которые применяются в доказывающих науках[795], одни свойственны каждой науке в отдельности, другие — общи всем; общи — по сходству, потому что (каждое общее всем начало) применимо, поскольку оно относится к роду, подчиненному (данной) науке[796]. Свойственным (лишь одной науке) является, например, то, что линия — такая-то и прямое — такое-то. Общее же, например, то, что если от равного отнять равные (части), то остаются равные же (части). Каждым из таких (общих положений) можно пользоваться, поскольку оно относится к роду, (подчиненному данной науке), ибо оно будет иметь одинаковую силу, если не брать его для всего подходящего), но (в геометрии) — в отношении величин, а в арифметике — в отношении чисел.

Перейти на страницу:

Похожие книги

Актуальность прекрасного
Актуальность прекрасного

В сборнике представлены работы крупнейшего из философов XX века — Ганса Георга Гадамера (род. в 1900 г.). Гадамер — глава одного из ведущих направлений современного философствования — герменевтики. Его труды неоднократно переиздавались и переведены на многие европейские языки. Гадамер является также всемирно признанным авторитетом в области классической филологии и эстетики. Сборник отражает как общефилософскую, так и конкретно-научную стороны творчества Гадамера, включая его статьи о живописи, театре и литературе. Практически все работы, охватывающие период с 1943 по 1977 год, публикуются на русском языке впервые. Книга открывается Вступительным словом автора, написанным специально для данного издания.Рассчитана на философов, искусствоведов, а также на всех читателей, интересующихся проблемами теории и истории культуры.

Ганс Георг Гадамер

Философия