В предыдущей главе мы уже указывали па тот странный факт, что после Аполлония Пергского в эллинистической математике не появилось ни одного большого имени. Примерно около столетия длилась эпоха «эпигонов», затем наступил двухвековой перерыв — как если бы математикой в это время вообще никто не занимался. Новый подъем намечается лишь к концу I в. н. э., т. е. уже в эпоху Римской империи. Двумя выдающимися математиками этого времени были Герон и Менелай — оба из Александрии.
где а2
— наибольший целый квадрат, меньший N. Есть у него правило и для извлечения кубического• корня. Эти и многие другие правила он формулирует без доказательств, лишь поясняя их числовыми примерами.Кроме того он заложил основы новой науки — сферической тригонометрии. В арабском переводе до нас дошла его «Сферика», состоящая из трех книг. В двух первых книгах доказываются различные теоремы о сферических треугольниках (между прочим, • теорема о равенстве).
Третья книга начинается с «теоремы о трансверсалях», состоящей в следующем.
Пусть даны две прямые АВ и АС и на них взяты две произвольные точки D и Е, и пусть CD и BE пересекаются в точке Z (рис. 13). Тогда можно доказать, что между отрезками, получившимся на чертеже, существуют такие соотношения:
Посредством проектирования из центра Менелай переводит эти отношения на сферу (рис. 14) и, если ADB, АЕС, CZD и BZE будут большими кругами сфер, получает отношение для хорд:
Из теоремы о трансверсалях Менелай получает ряд формул сферической тригонометрии.
Доказанная Менелаем «теорема о трансверсалях» нашла потом широкое применение у Птолемея. Вообще вся эта область математики разрабатывалась тогда в качестве математического аппарата для астрономии; тем не менее книга Менелая представляла собой значительное достижение и с чисто математической точки зрения.
Клавдий Птолемей был также несомненно прекрасным математиком, хотя математика интересовала его главным образом лишь как средство для решения астрономических и картографических задач. Но он не чуждался и чисто математической проблематики, о чем свидетельствует то, что им было написано сочинение о параллельных линиях и о пятом постулате Евклида (о чем сообщает Прокл). Текст этого сочинения утрачен и сколько-нибудь детальными сведениями о его содержании мы не располагаем (неоплатоник Прокл приводит якобы птоломеево доказательство пятого постулата Евклида, содержащее грубую ошибку).
Следует отметить, что в «Альмагесте» Птолемеи широко пользуется заимствованной у вавилонян шестидесятеричной системой нумерации, применяя ее не только для дуг круга, но также для отрезков и площадей. Таким образом, «минуты», «секунды» и т. д. становятся у него отвлеченными числами, не связанными с каким-либо определенным видом величины. Любопытно, что в его записи дробей существовал символ о («омикрон»), служивший для обозначения отсутствия одного из шестидесятеричных разрядов. Это — первое появление нуля в европейской математической литературе.
В лице