Таковы математические предметы. Недаром именно в них мудрецы искусно находили примеры умопостигаемых вещей, и великие светочи древности приступали к трудным вещам только с помощью математических подобий. Боэций, ученейший из римлян, даже утверждал, что никому не постичь божественной науки, если он лишен навыка в математике. Не Пифагор ли, первый философ и по имени и по делам, положил, что всякое исследование истины совершается через число? Пифагору следовали платоники и наши первые учители настолько, что Августин, а за ним Боэций утверждали, что первоначальным прообразом творимых вещей было в душе создателя несомненно число. Разве Аристотель, который, опровергая предшественников, желал предстать единственным в своем роде, сумел показать нам в «Метафизике» различие сущностей каким-то другим образом, чем в сравнении с числами? Желая преподать свое учение о природных формах — о том, что одна пребывает в другой, — он тоже был вынужден прибегнуть к математическим фигурам и сказать: "Как треугольник в четырехугольнике, так низшее — в высшем". Молчу о бесчисленных сходных примерах. Платоник Августин Аврелий, исследуя количество души, ее бессмертие и другие высшие предметы, тоже пользовался помощью математики. Наш Боэций счел этот путь самым уместным и постоянно утверждал, что и всякое учение об истине охватывается множеством и величиной. Если угодно, могу сказать короче: разве не с помощью математического доказательства пифагорейцам и перипатетикам только и удалось опровергнуть отрицающее бога и противоречащее всей истине мнение эпикурейцев об атомах и пустоте, доказав, что невозможно прийти к неделимым и простым величинам, которые служили Эпикуру предпосылкой и основой всего его учения?
Вступая на проложенный древними путь, скажем вместе с ними, что если приступить к божественному нам дано только через символы, то всего удобнее воспользоваться математическими знаками из-за их непреходящей достоверности. <…>
ГЛАВА 20
ЕЩЕ О ТРОИЦЕ И О ТОМ, ЧТО В БОГЕ НЕ МОЖЕТ БЫТЬ ЧЕТВЕРИЦЫ И ТАК ДАЛЕЕ
Дальше. Истина Троицы, триединство требует, чтобы тройственное было единым, почему оно и называется триединым. Но это удается понять только таким образом, что соотношением различное соединяется, а порядком различается. Соответственно при построении конечного треугольника сначала имеем один угол, потом другой и, наконец, третий из обоих первых, причем эти углы взаимно соотнесены, образуя единый треугольник. Так же и в бесконечном треугольнике — бесконечным образом. Однако понимать здесь все нужно так, чтобы при мысли о первом в вечности последующее не оказывалось противоположным ему понятием, иначе первичность и последование с бесконечным и вечным никак не вяжется. Отец не прежде Сына и Сын не после Отца; Отец прежде Сына только так, что Сын не позднее его. Если Отец есть первое лицо, то Сын есть второе не после него, но как Отец — первое лицо без предшествования, так Сын — второе лицо без последования; и равным образом третье лицо, Святой Дух. Впрочем, достаточно; выше обо всем этом было уже ясно сказано.
Но относительно вечноблагословенной Троицы, пожалуйста, обрати внимание еще на то, что максимум троичен, а не четверичен, не пятиричен и так далее, — вещь, поистине достойная упоминания. Такое противоречило бы максимальной простоте и совершенству.
В самом деле, всякая многоугольная фигура своим простейшим первоэлементом имеет треугольник, то есть минимальную многоугольную фигуру, меньше которой не может быть. Но доказано, что простой минимум совпадает с максимумом. Треугольник занимает тем самым в ряду многоугольников такое же положение, какое единое занимает в числовом ряду: как всякое число разрешается в единство, так многоугольник разрешается в треугольник. Поэтому максимальный треугольник, с которым совпадает минимальный, свертывает в себе все многоугольные фигуры; максимальный треугольник относится ко всякому многоугольнику, как максимальное единство относится ко всякому числу. Наоборот, четырехугольная фигура не минимальна, что очевидно, поскольку треугольник меньше ее; значит, простейшему максимуму, который может совпасть только с минимумом, четырехугольник, всегда составный и потому больший минимума, подходить никак не может. Больше того, "быть максимумом" и "быть четырехугольником" заключает в себе противоречие: такой максимум не мог бы быть точной мерой треугольников, потому что всегда превосходил бы их, а какой же он максимум, если он не мера всего? Да и как может быть максимумом то, что возникает из чего-то другого, составно и, следовательно, конечно?