Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

Рис. 3.6. Человеку какого пола принадлежит лицо на изображении? Перцептрон был обучен распознавать женские и мужские лица. Пиксели на изображении лица (слева) умножаются на соответствующий вес (справа), и полученная сумма сравнивается с порогом. Размер каждого веса отображается как площадь пикселя. Положительный вес (белый) является признаком мужских лиц, а отрицательный вес (черный) — женских. Ширина носа, размер области между носом и ртом, а также интенсивность изображения вокруг области глаз важны для определение лица как мужского, в то время как интенсивность изображения вокруг рта и скул — для распознавания женских.


Интересной задачу делает то, что, хоть мы и хорошо умеем отличать мужские лица от женских, мы не можем перечислить конкретные черты. Это проблема распознавания образов, которая зависит от объединения данных из большого количества низкоуровневых признаков, поскольку ни один из них не является окончательным. Преимущество перцептрона в том, что вес дает подсказки, какие части лица наиболее информативны для определения пола (рис. 3.6). Примечательно, что губной желобок (вертикальное углубление между носом и верхней губой) — одна из самых характерных черт, он намного крупнее у мужчин. Область вокруг глаз (больше у мужчин) и щеки (больше у женщин) также достаточно информативны. Перцептрон извлекает информацию обо всех отличительных признаках, чтобы принять решение. Примерно то же самое делает и человек, хоть он вряд ли сможет объяснить ход своих рассуждений.

Розенблатт доказал теорему сходимости перцептрона в 1957 году. Это стало огромным шагом вперед, а демонстрация работы системы впечатляла. При поддержке Управления военно-морских исследований Министерства обороны США он создал аналоговый компьютер с 400 фотоэлементами на входе с весами, который представляли собой потенциометры переменного сопротивления, регулируемые двигателями. Аналоговые сигналы непрерывно менялись так же, как сигналы от виниловых пластинок. Если внести в перцептрон множество фотографий с танками и без, он научится распознавать танки на незнакомых для него изображениях. Сообщение об этом в New York Times стало сенсацией (см. рис. 3.4)[68].

Перцептрон способствовал появлению математического анализа разделения шаблонов в многомерном пространстве. Интуитивные предположения о точках в трехмерном пространстве, в котором мы и живем, вводят нас в заблуждение, когда точки расположены в пространстве с тысячами измерений. Русский математик Владимир Вапник[69] представил классификатор, названный «Метод опорных векторов»[70], который обобщил принципы работы перцептрона и стал широко использоваться в машинном обучении. Он нашел путь к автоматическому обнаружению плоскости, которая максимально разделяет две категории (см. рис. 3.5, линейный случай). Это делает обобщение более устойчивым к погрешностям измерения точек в пространстве, и в сочетании с так называемым ядерным трюком (kernel trick), который является нелинейным расширением, алгоритм стал основным в машинном обучении[71].

Закат перцептронов

Тем не менее существовало ограничение, затрудняющее исследования. Упомянутое выше примечание «…если такой набор веса существует» ставит вопрос: какие задачи могут быть решены с помощью перцептронов, а какие — нет? Очень простое распределение точек в двух измерениях не может быть распознано перцептроном (см. рис. 3.5, нелинейные случаи). Оказалось, что «танковый» перцептрон классифицирует не танки, а время суток. Классифицировать танки на изображениях гораздо сложнее, и это невозможно сделать с помощью перцептрона. Это также показывает, что даже если перцептрон чему-то научился, то не обязательно тому, что вы хотели.



Рис. 3.7. Обложка книги «Перцептроны». Две красные спирали выглядят одинаково, но они разные. Верхняя — это две разные, несоединенные спирали, в то время как нижняя — единая спираль, в чем вы можете убедиться, если проведете внутри нее карандашом. Минский и Пейперт доказали, что перцептрон не может найти отличия между ними. А вы сможете это сделать без отслеживания? Почему нет?


Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература