Последним ударом по перцептрону стал математический трактат Марвина Минского и Сеймура Пейперта «Перцептроны», опубликованный в 1969 году. Их геометрический анализ показал, что возможности перцептрона ограничены. Перцептроны могут разграничивать только линейно отделимые категории (см. рис. 3.5). В конце книги авторы рассмотрели перспективу обобщения однослойного перцептрона на несколько слоев, где один слой переходил в следующий. Многослойные перцептроны более мощные, чем линейные классификаторы, но Минский и Пейперт выражали сомнение, что создание таковых в принципе осуществимо. К сожалению, многие посчитали их сомнения истинными и окончательными, и перцептрон был заброшен, пока новое поколение исследователей нейронных сетей в 1980-х годах не взглянуло на проблему с другой стороны. Обложка книги иллюстрирует геометрическую задачу, которую, по мнению авторов, перцептрон не сможет решить (рис. 3.7). Иронично, но эта проблема трудна и для людей.
В перцептроне входная информация вносит независимые данные в блок выхода. Но что делать, если несколько входных данных должны быть объединены таким образом, чтобы решения зависели от комбинации, а не от каждого факта отдельно? Это и есть причина, по которой перцептрон не может определить, единая спираль или нет: один пиксель не несет никакой информации о том, находится он внутри или снаружи. В многослойном перцептроне возможно соединение комбинаций на промежуточных слоях между модулями входа и выхода. Однако в 1960-х годах ученые не знали, как обучить сеть даже с одним промежуточным слоем.
Фрэнк Розенблатт и Марвин Минский были одноклассниками в Высшей научной школе Бронкса. Они обсуждали свои радикально разные подходы к ИИ на научных встречах, и Минский лидировал. Каждый из них внес важный вклад в понимание перцептрона, что стало отправной точкой глубокого обучения, и очень жаль, что их противостояние закончилось.
Розенблатт трагически погиб при крушении лодки в 1971 году в возрасте 43 лет. Споры о перцептроне были в самом разгаре, и ходили слухи, что он был в подавленном состоянии и, возможно, даже совершил самоубийство. Стало ясно, что «золотой век» открытий новых способов вычислений с помощью нейронных сетей подходит к концу, и сменилось целое поколение, прежде чем исследования Розенблатта были возобновлены.
Глава 4
Обработка данных как в человеческом мозге
«Если бы у меня был мозг…» — поет Страшила в «Волшебнике из страны Оз». Но Страшила не знал, что у него есть мозг, ведь без него он не мог бы ни петь, ни разговаривать. Ему было всего два дня, и основная его проблема заключалась в отсутствии опыта. Со временем, постепенно узнавая мир вокруг себя, он стал одним из самых мудрых существ в стране Оз; мудрым настолько, чтобы осознать пределы своих возможностей. Напротив, Железный дровосек пел: «Если бы у меня было сердце…» Он спорил со Страшилой, что важнее: мозг или сердце? В стране Оз, как и в реальном мире, знания совместно с эмоциями и создают в процессе обучения интеллект. Оба качества — продукты мозга, находящиеся в хрупком равновесии. Эта классическая история отражает основную тему данной главы: что если бы ИИ имел сердце и мозг?
Как работает мозг
Когда мы с Джеффри Хинтоном (рис. 4.1) встретились в 1979 году на организованном им семинаре, у нас были похожие взгляды на возможности нейронных сетей. Мы быстро нашли общий язык и позже стали вместе работать над открытием нового типа модели нейронных сетей, названной Машиной Больцмана, речь о которой пойдет в главе 7. Новая модель пробила плотину, целое поколение сдерживающую изучение многослойных нейронных сетей.
Раз в несколько лет Джеффри звонил мне и говорил: «Я понял, как работает мозг». Каждый раз появлялась умная схема для улучшения работы моделей нейронных сетей. Потребовалось много таких идей и уточнений для глубокого обучения в многослойных нейронных сетях, чтобы достичь уровня производительности, сопоставимой с человеческим, при распознавании объектов на фотографиях и речи во время звонка по телефону. Эти возможности получили широкое распространение всего несколько лет назад и теперь широко известны, но путь был долгим.
Рис. 4.1. Джеффри Эверест Хинтон в начале карьеры (слева) и в 1979 году во время работы на своем семинаре по параллельным моделям ассоциативной памяти в Ла-Хойя в Сан-Диего. Его второе имя — Эверест — было дано в честь Джорджа Эвереста, который исследовал Индию и выяснил, как измерить высоту самой высокой в мире горы, которая теперь носит его имя. Фотографии сделаны с разницей в 15 лет.