Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

При постоянной «температуре» машина Больцмана приходит в равновесие. В состоянии равновесия происходит нечто невероятное, открывающее дверь, которая, как все считали, останется закрытой навсегда: многослойное обучение нейронной сети. Однажды мне позвонил Джеффри Хинтон и сказал, что только что вывел простой алгоритм обучения для машины Больцмана. Целью обучающего алгоритма было отобразить блоки ввода в блоках вывода, но, в отличие от перцептрона, между ними были блоки, называемые скрытыми элементами (см. блок 4). Представляя пары ввод — вывод и применяя алгоритм обучения, сеть изучила требуемое преобразование. Но простое запоминание пар не было целью; она состояла в том, чтобы правильно классифицировать новые входы, которые не использовались для обучения сети. Кроме того, поскольку машина Больцмана всегда «колеблется», это позволило изучить распределение вероятностей — как часто данный входной шаблон обращается к каждому из состояний вывода. Последнее делает машину Больцмана производящей: после обучения она может создавать новые входные выборки для каждой выходной категории.

Теория синаптической пластичности Хебба

Неожиданно выяснилось, что алгоритм обучения машины Больцмана имеет долгую историю в нейробиологии, начинающуюся с психолога Дональда Хебба, который в книге «Организации поведения»[163] постулировал, что, когда два нейрона срабатывают одновременно, связь между ними должна усиливаться:

«Давайте предположим, что постоянная или повторяющаяся отражательная активность („след“) ведет к длительным клеточным изменениям, которые усиливают стабильность. Когда аксон клетки А находится достаточно близко, чтобы возбудить клетку В, и неоднократно или постоянно принимает участие в ее возбуждении, в одной или обеих клетках происходит некий процесс роста или метаболических изменений, так что эффективность клетки А, возбуждаемой клеткой В, увеличивается».

Возможно, это самое известное предсказание во всей нейробиологии. Позже синаптическая пластичность была обнаружена в гиппокампе — важной для долговременной памяти области мозга. Когда пирамидальная клетка гиппокампа получает сильный входной сигнал одновременно с возбуждением нейрона, сила синапсов увеличивается. Последующие эксперименты показали, что усиление основано на сочетании высвободившегося из синапса нейромедиатора и повышения напряжения в нейроне-реципиенте.

Более того, это соединительное явление было распознано особым глутаматным рецептором NMDA, который вызывает долговременную потенциацию (усиление) синаптической передачи. ДП возникает быстро и длится долго, что создает хорошую почву для долгосрочной памяти. Пластичность Хебба в синапсе определяется совпадениями между входами и выходами, как и в алгоритме машинного обучения Больцмана.

Еще удивительнее то, что машине Больцмана требовалось заснуть, чтобы научиться! Алгоритм обучения состоял из двух этапов. На первом, когда входы и выходы привязаны к желаемому изображению, блоки в сети многократно обновлялись, чтобы прийти к равновесию, и подсчитывалось, сколько каждая пара блоков работала одновременно. Мы назвали это фазой пробуждения. На втором этапе входные и выходные блоки были освобождены, и отрезок времени, в течение которого каждая пара блоков работала вместе, был подсчитан в независимом режиме. Мы назвали это фазой сна. Затем сила каждого соединения обновлялась пропорционально разнице между частотой совпадения в фазах бодрствования и сна (см. блок 4).



Рис. 7.5. Симметричное неупорядоченное растровое изображение. У каждой сетки 10×10 есть вертикальная, горизонтальная или диагональная ось зеркальной симметрии. Цель сетевой модели — научиться определять ось симметрии на новых рисунках, которые еще не использовали для обучения сетевой модели.


Фаза сна у машины необходима, чтобы определить, какая часть зафиксированных взаимосвязей вызвана внешними причинами. Не отбрасывая внутренние взаимосвязи, сеть укрепит внутренние модели деятельности и научится игнорировать внешнее влияние — сетевую версию индуцированного психоза[164]. Интересно, что у людей экстремальное недосыпание приводит к бредовым состояниям — распространенной проблеме в больницах в отделениях интенсивной терапии, где нет окон и постоянно горит свет. Пациенты с шизофренией часто страдают нарушениями сна, которые могут усиливать спутанность их сознания. Мы были убеждены, что находимся на правильном пути к пониманию того, как работает наш мозг.

Изучение зеркальной симметрии

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература