Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

Фон Нейман также интересовался мозгом. В своих Силлимановских лекциях[366] в Йельском университете он размышлял о том, как мозг может надежно функционировать с такими ненадежными компонентами[367]. Когда транзистор в цифровом компьютере допускает ошибку, весь компьютер может выйти из строя, но когда нейрон в мозге дает сбой, остальная часть мозга адаптируется к сбою и продолжает работать. Фон Нейман полагал, что причиной устойчивости мозга может быть запас «лишних» связей, так как в каждой операции участвует множество нейронов. Избыточность, как правило, нужна для резервной копии на случай отказа основной системы. Но сейчас мы знаем, что избыточность в мозге основана на разнообразии, а не на дублировании. Фон Неймана также волновала логическая глубина: сколько логических шагов может сделать мозг, прежде чем накопленные ошибки испортят результат. В отличие от компьютера, который может отлично выполнять каждый логический шаг, в мозге множество источников помех. Мозг не может достичь совершенства, но поскольку так много нейронов работают параллельно и одновременно, за каждый шаг он выполняет гораздо больше, чем компьютер, и ему требуется меньшая логическая глубина.

Пространство алгоритмов

Сколько всего алгоритмов? Представьте себе пространство всех возможных алгоритмов. Каждая точка в пространстве — алгоритм, который что-то делает. Некоторые из них удивительно полезны и удобны. В прошлом их создавали вручную математики и программисты, трудясь как ремесленники в артели. Стивен Вольфрам автоматизировал процесс для клеточных автоматов путем полного перебора алгоритмов, начиная с самых простых, некоторые из которых выдавали очень сложные рисунки. Этот принцип обобщен в выведенном Вольфрамом правиле, которое гласит: вам не нужно углубляться в пространство алгоритмов, чтобы найти тот, что решает интересующий вас класс проблем. Примерно как отправлять ботов играть в StarCraft в Сети, чтобы опробовать все возможные стратегии. Согласно правилу Вольфрама, где-то во вселенной алгоритмов должна быть галактика алгоритмов, которые приведут к победе.

Вольфрам сосредоточился на пространстве клеточных автоматов — небольшой части в пространстве всех возможных алгоритмов. Теперь у нас есть подтверждение правила Вольфрама и в пространстве нейронных сетей. Каждая сеть глубокого обучения была найдена с помощью обучающего алгоритма, который представляет собой метаалгоритм для поиска новых алгоритмов. Для большой сети и большого набора данных обучение из разного исходного состояния может создавать галактику сетей, примерно одинаково хороших в решении проблемы. Встает вопрос, есть ли более быстрый способ найти область пространства алгоритма, чем градиентный спуск — медленный и требующий уйму данных. На такую возможность намекает то, что каждый вид представлен множеством отдельных особей, созданных вариантными последовательностями ДНК вокруг точки в пространстве живых алгоритмов, и природе удалось перепрыгнуть из одного множества в другое путем естественного отбора в результате скачкообразного процесса, называемого прерывистым равновесием[368], одновременно с локальным поиском случайных мутаций. Генетические алгоритмы были разработаны, чтобы совершать скачки, подобно тому, как в ходе эволюции в природе появляются новые организмы[369]. Нам нужна математика для описания множества этих алгоритмов. Кто знает, как выглядит вселенная алгоритмов? Есть еще много галактик алгоритмов, которые мы еще не открыли, но можем найти с помощью автоматического поиска. Это последний рубеж.

Простому примеру такой обработки последовал Клаус Штифель, научный сотрудник моей лаборатории, использовавший алгоритм, который вырастил в компьютере нейроны со сложными дендритными деревьями[370]. Дендриты подобны антеннам, которые собирают входные данные от других нейронов. Пространство возможных дендритных деревьев огромно, и цель состояла в том, чтобы указать желаемую функцию и найти в пространстве дендритных деревьев модельный нейрон, который вычислит функцию. Одно из полезных свойств — определять, в каком порядке сигналы поступают на вход: когда конкретный входящий сигнал приходит раньше другого, нейрон должен отправлять импульс, но если тот поступает позже, нейрон должен молчать. Такой модельный нейрон нашли перебором всех возможных дендритных деревьев с помощью генетического алгоритма, и решение выглядело как кортикальный пирамидальный нейрон с синапсом на тонком дендрите, выходящем снизу (базальный дендрит), и другим синапсом на толстом дендрите, выходящем из вершины (апикальный дендрит) (рис. 14.6). Возможно, это объясняет, почему пирамидальные клетки имеют апикальные и базальные дендриты, роль которых невозможно было бы представить без глубокого поиска в пространстве всех вероятных дендритов. Повторяя поиск для других функций, можно автоматически составить их словарь в зависимости от формы дендритов, и, обнаружив новый нейрон, просто сверяться со справочником, чтобы определить его потенциальные функции.

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература