Читаем Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет полностью

Еще одна яркая фигура с серьезным научным подходом к сложности — Стивен Вольфрам (рис. 13.1), основавший Центр исследований сложных систем в Университете Иллинойса в 1986 году. Он был вундеркиндом, в 20 лет получил докторскую степень по физике в Калтехе, став самым молодым из тех, кому это удалось. Стивен решил, что нейронные сети слишком сложны, и стал исследовать клеточные автоматы.

У клеточных автоматов обычно лишь несколько дискретных значений, которые изменяются со временем в зависимости от состояния других клеток. Один из простейших клеточных автоматов — одномерный массив ячеек, каждая из которых имеет значение «0» или «1» (блок 7). Пожалуй, самый известный клеточный автомат — игра «Жизнь», которую в 1968 году изобрел Джон Конвей, Фоннеймановский профессор из Принстонского университета, и популяризировал Мартин Гарднер в своей колонке «Математические игры» в журнале Scientific American. Игра показана на рис. 13.2. Доска представляет собой двумерный массив ячеек, которые могут быть включены или выключены, и правило обновления зависит только от четырех ближайших соседей. При каждом шаге обновляются все состояния. В массиве генерируются сложные шаблоны, часть даже имеет имена — например, «планеры», которые пролетают через массив и сталкиваются с другими шаблонами. Начальные условия крайне важны для поиска конфигурации, отображающей сложные шаблоны.

Насколько распространены правила, создающие сложность? Стивен хотел узнать простейшее правило клеточных автоматов, которое может привести к сложному поведению, и поэтому начал перебирать их одно за другим. Правила под номерами от 0 до 29 создавали шаблоны, которые всегда возвращались к скучному поведению: в итоге все ячейки имели либо повторяющийся рисунок, либо фрактальный, с вложенными копиями самого себя. Однако правило 30 поражало непрерывно изменяющимися сложными моделями (блок 7). В конечном счете было доказано, что «правило 110» способно к универсальным вычислениям. То есть некоторые из простейших клеточных автоматов обладают возможностями машины Тьюринга, которая способна вычислить любую вычислимую функцию, поэтому она теоретически столь же мощна, как и любой компьютер.



Рис. 13.2. Game of life. Снимок Планерного ружья Госпера (сверху), которое излучает последовательность «планеров», движущихся по диагонали, от «материнского корабля» сверху к правому нижнему углу.


Одно из следствий этого открытия — вывод, что удивительная сложность, которую мы находим в природе, могла методом проб и ошибок развиться в простейшей среде химического взаимодействия между молекулами. То, что в ходе эволюции возникнут сложные комбинации молекул, ожидаемо и не должно считаться чудом. Однако клеточные автоматы — не достаточно хорошая модель зарождения жизни, и остается открытым вопрос, какие простые химические системы способны создавать сложные молекулы[362]. Возможно, только особые биохимические системы обладают таким свойством, и это сужает вероятный набор взаимодействий, из которых могла возникнуть жизнь. Теперь мы знаем, что избыточность[363] в мозге основана на разнообразии, а не на дублировании.

Важнейшее свойство жизни — способность клетки к самовоспроизведению. Джон фон Нейман из Института перспективных исследований в Принстоне прорабатывал этот вопрос в 1940-х годах с использованием клеточных автоматов. Фон Нейман — венгерский ученый, оказавший сильное влияние на многие области математики, включая его основополагающие работы по теории игр, упомянутые в главе 1. Какой простейший клеточный автомат может точно воспроизвести себя? Фон Нейман нашел очень сложный клеточный автомат с 29 внутренними состояниями и большим объемом памяти, позволяющим тому самовоспроизводиться. Это имеет определенный биологический интерес, так как у клеток с такой же способностью есть много внутренних состояний и память, выраженная в виде ДНК. С тех пор были найдены еще более простые клеточные автоматы, умеющие самовоспроизводиться.

Мозг — это компьютер?

В 1943 году Уоррен Маккалок и Уолтер Питтс показали, что можно построить цифровой компьютер с помощью простых двоичных элементов с заданным порогом, таких как перцептрон, который можно включить в компьютер в качестве элементарного логического вентиля[364]. Теперь мы знаем, что мозг обладает смешанными аналоговыми и цифровыми свойствами и что нейронные сети обычно не вычисляют логические функции. Но в то время эта статья привлекла много внимания и, в частности, вдохновила Джона фон Неймана задуматься о компьютерах. Он построил один из первых цифровых компьютеров, в котором хранились программы, — необычный проект для математика того времени. Когда в 1957 году фон Нейман умер, Институт перспективных исследований не продолжил его начинание и выбросил компьютер[365].

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Цифровой журнал «Компьютерра» № 24
Цифровой журнал «Компьютерра» № 24

ОглавлениеБольшие новостиMicrosoft BizSpark: поиски инвесторов и менторов Автор: Григорий РудницкийNASA открыло виртуальную лунную базу Автор: Михаил КарповТерралабПромзона: Катушка с лупой Автор: Николай МаслухинPixel Qi: дисплеи, не слепнущие на солнце Автор: Юрий ИльинПромзона: Батарейки Microsoft Автор: Николай МаслухинСофт: Process Explorer — порнобаннер в прицеле Автор: Николай МаслухинSynaptics: тачпады нового поколения Автор: Олег НечайПромзона: Очки-суфлер Автор: Николай МаслухинМобильный интернет для малого бизнеса Автор: Максим БукинВещь дня: беззеркальная камера Lumix G2 Автор: Андрей ПисьменныйHDBaseT 1.0: дешёвая замена HDMI Автор: Олег НечайПромзона: Воздушный холодильник Автор: Николай МаслухинСофт: Настраиваем Ubuntu с помощью Ubuntu Tweak Автор: Крестников ЕвгенийПромзона: Бескрайний бассейн Автор: Николай МаслухинСпособы обмана в мобильных сетях Автор: Максим БукинСвоя играВасилий Щепетнёв: О пользе словаря Автор: Василий ЩепетневКивино гнездо: Человек против обмана Автор: Берд КивиMicrosoft: что пошло не так Автор: Андрей ПисьменныйКафедра Ваннаха: Скольжение к сингулярности Автор: Ваннах МихаилВасилий Щепетнёв: Гамбит Форт-Росс Автор: Василий ЩепетневКафедра Ваннаха: Облачное программирование и Пуэрто-Рико Автор: Ваннах МихаилВасилий Щепетнёв: Следы на целлулоиде Автор: Василий ЩепетневКивино гнездо: Конфликт криптографии и бюрократии Автор: Берд КивиИнтерактивЛюдмила Булавкина, директор YouDo по маркетингу, о любительском контенте Автор: Юрий ИльинМакс Зацепин и Глеб Никитин о музыкальной игре для iPad Автор: Юрий ИльинСергей Матиясевич (3D Bank) о рынке трёхмерных моделей Автор: Юрий ИльинВ. Репин (ИХБФМ СО РАН) о бактерии из вечной мерзлоты Автор: Алла АршиноваДмитрий Завалишин об операционной системе «Фантом» Автор: Андрей ПисьменныйБлогиАнатолий Вассерман: «Марс-500» Автор: Анатолий ВассерманКак большой оператор споткнулся о маленького SaaS-провайдера Автор: Анисимов КонстантинАнатолий Вассерман: Дальневосточные «партизаны» Автор: Анатолий ВассерманГолубятня-ОнлайнГолубятня: Сидр №4 Автор: Сергей ГолубицкийГолубятня: Бедность Автор: Сергей Голубицкий

Журнал «Компьютерра»

Зарубежная компьютерная, околокомпьютерная литература