Ясно, что сейчас нас интересует "общность" иного рода. Мы ищем различия в общности математических теорем, которые в смысле Уайтхеда все обладают одинаковой общностью. Таким образом, "тривиальные" теоремы (а) и (в) из §15 столь же "абстрактны" или "общи", как теоремы Евклида и Пифагора и как любая шахматная задача. Для шахматной проблемы безразлично, какого цвета фигуры - белые и чёрные или красные и зелёные и, вообще, существуют ли физические "фигуры". Во всех этих случаях мы имеем дело с одой и той же задачей, которую знаток легко держит в голове, а нам приходится трудолюбиво воспроизводить на шахматной доске. Нужно сказать, что шахматная доска и фигуры - всего лишь устройства, стимулирующие наше вялое воображение и имеющие к сути проблемы ничуть не больше отношения, чем доска и мел - к теоремам, доказываемым на лекции по математике.
Речь идёт не о той общности, которая присуща всем математическим теоремам, поиском которой мы занимались до сих пор. Сейчас нас интересует та, более тонкая и неуловимая, общность, которую я попытался в общих чертах описать в §15. И нам следует тщательно следить за тем, чтобы не делать чрезмерный акцент даже на такой общности (как это имеют обыкновение делать логики, например, Уайтхед). Это не просто "нагромождение тонкостей обобщения на тонкости обобщения", принадлежащее к числу выдающихся достижений современной математики. Некоторая мера общности должна присутствовать в любой теореме высокого класса, но чрезмерная дозировка общности неизбежно приводит к "бесцветности" теоремы. "Всё есть то, что оно есть, а не другое", и различия между вещами не менее интересны, чем сходство между ними. Мы выбираем своих друзей не потому, что они воплощают в себя все приятные качества, какие только могут быть присущи людям, а потому, что они являются теми, кто они есть. Так происходит и в математике; свойство, общее для слишком многих объектов, вряд ли может быть очень интересным, и математические идеи также становятся скучными, если не обладают индивидуальностью в достаточной мере. Здесь я по крайней мере могу процитировать Уайтхеда, выступающего в данном случае на моей стороне: "Плодотворная концепция заключается в широком обобщении, ограниченном удачной конкретизацией".
17
Второе свойство, которое я потребовал от значительной идеи, - её глубина. Определить его ещё труднее. Оно каким-то образом связано с трудностью; "более глубокие" идеи обычно труднее постичь, но вместе с тем это не одно и то же. Идеи, лежащие в основании теоремы Пифагора и её обобщений весьма глубоки, но современный математик не счёл бы их трудными. С другой стороны, теорема может быть в сущности поверхностна, но очень трудна для доказательства (таковы, например, очень многие "диофантовы"[120] теоремы, т.е. теоремы о решении уравнений в целых числах).
Создаётся впечатление, что математические идеи "стратифицированы", т.е. расположены как бы слоями, идеи в каждом слое связаны целым комплексом отношений между собой и с идеями, лежащими в верхних и нижних слоях. Чем ниже слой, тем глубже (и, как правило, труднее) идея. Так, идея "иррационального числа" глубже идеи целого числа, и по этой причине теорема Пифагора глубже теоремы Евклида.
Сосредоточим внимание на отношениях между целыми числами или в какой-нибудь другой группе объектов, лежащих в каком-нибудь конкретном слое. Может случиться так, что одно из этих отношений окажется полностью понятным, что мы сможем распознать и доказать, например, какое-нибудь свойство целых чисел, не зная о содержании слоев, расположенных ниже. Так, теорему Евклида мы доказали, рассматривая только свойства целых чисел. Но существует также немало теорем о целых числах, которые мы не можем должным образом оценить и ещё в меньшей степени доказать, не "копая" глубже и не выясняя того, что происходит в лежащих ниже слоях.
Нетрудно привести соответствующие примеры из теории простых чисел. Теорема Евклида очень важна, но не отличается особой глубиной: мы можем доказать, что существует бесконечно много простых чисел, не пользуясь ничем глубже понятия "делимости". Но как только мы узнаем, что простых чисел бесконечно много, сразу же возникают новые вопросы. Да, простых чисел бесконечно много, но как они распределены? Пусть N - некоторое большое число, например,
Я мог бы легко увеличить число примеров, но понятие "глубины" неуловимо даже для математика, способного его распознать, и вряд ли я могу сказать ещё что-нибудь об этом понятии, что будет особенно полезным читателям-неспециалистам.
18