Читаем Апология математика полностью

Ясно, что сейчас нас интересует "общность" иного рода. Мы ищем различия в общности математических теорем, которые в смысле Уайтхеда все обладают одинаковой общностью. Таким образом, "тривиальные" теоремы (а) и (в) из §15 столь же "абстрактны" или "общи", как теоремы Евклида и Пифагора и как любая шахматная задача. Для шахматной проблемы безразлично, какого цвета фигуры - белые и чёрные или красные и зелёные и, вообще, существуют ли физические "фигуры". Во всех этих случаях мы имеем дело с одой и той же задачей, которую знаток легко держит в голове, а нам приходится трудолюбиво воспроизводить на шахматной доске. Нужно сказать, что шахматная доска и фигуры - всего лишь устройства, стимулирующие наше вялое воображение и имеющие к сути проблемы ничуть не больше отношения, чем доска и мел - к теоремам, доказываемым на лекции по математике.

Речь идёт не о той общности, которая присуща всем математическим теоремам, поиском которой мы занимались до сих пор. Сейчас нас интересует та, более тонкая и неуловимая, общность, которую я попытался в общих чертах описать в §15. И нам следует тщательно следить за тем, чтобы не делать чрезмерный акцент даже на такой общности (как это имеют обыкновение делать логики, например, Уайтхед). Это не просто "нагромождение тонкостей обобщения на тонкости обобщения", принадлежащее к числу выдающихся достижений современной математики. Некоторая мера общности должна присутствовать в любой теореме высокого класса, но чрезмерная дозировка общности неизбежно приводит к "бесцветности" теоремы. "Всё есть то, что оно есть, а не другое", и различия между вещами не менее интересны, чем сходство между ними. Мы выбираем своих друзей не потому, что они воплощают в себя все приятные качества, какие только могут быть присущи людям, а потому, что они являются теми, кто они есть. Так происходит и в математике; свойство, общее для слишком многих объектов, вряд ли может быть очень интересным, и математические идеи также становятся скучными, если не обладают индивидуальностью в достаточной мере. Здесь я по крайней мере могу процитировать Уайтхеда, выступающего в данном случае на моей стороне: "Плодотворная концепция заключается в широком обобщении, ограниченном удачной конкретизацией".

<p>17</p>

Второе свойство, которое я потребовал от значительной идеи, - её глубина. Определить его ещё труднее. Оно каким-то образом связано с трудностью; "более глубокие" идеи обычно труднее постичь, но вместе с тем это не одно и то же. Идеи, лежащие в основании теоремы Пифагора и её обобщений весьма глубоки, но современный математик не счёл бы их трудными. С другой стороны, теорема может быть в сущности поверхностна, но очень трудна для доказательства (таковы, например, очень многие "диофантовы"[120] теоремы, т.е. теоремы о решении уравнений в целых числах).

Создаётся впечатление, что математические идеи "стратифицированы", т.е. расположены как бы слоями, идеи в каждом слое связаны целым комплексом отношений между собой и с идеями, лежащими в верхних и нижних слоях. Чем ниже слой, тем глубже (и, как правило, труднее) идея. Так, идея "иррационального числа" глубже идеи целого числа, и по этой причине теорема Пифагора глубже теоремы Евклида.

Сосредоточим внимание на отношениях между целыми числами или в какой-нибудь другой группе объектов, лежащих в каком-нибудь конкретном слое. Может случиться так, что одно из этих отношений окажется полностью понятным, что мы сможем распознать и доказать, например, какое-нибудь свойство целых чисел, не зная о содержании слоев, расположенных ниже. Так, теорему Евклида мы доказали, рассматривая только свойства целых чисел. Но существует также немало теорем о целых числах, которые мы не можем должным образом оценить и ещё в меньшей степени доказать, не "копая" глубже и не выясняя того, что происходит в лежащих ниже слоях.

Нетрудно привести соответствующие примеры из теории простых чисел. Теорема Евклида очень важна, но не отличается особой глубиной: мы можем доказать, что существует бесконечно много простых чисел, не пользуясь ничем глубже понятия "делимости". Но как только мы узнаем, что простых чисел бесконечно много, сразу же возникают новые вопросы. Да, простых чисел бесконечно много, но как они распределены? Пусть N - некоторое большое число, например, или (13). Сколько существует простых чисел, не превосходящих числа N?(14) Стоит нам задать эти вопросы, как мы оказываемся в совершенно ином положении. Мы в состоянии ответить на них с поразительной точностью, но только если копнем глубже, оставив на время в стороне целые числа, и воспользуемся самым мощным оружием современной теории функций. Таким образом, теорема, дающая ответ на наши вопросы (так называемая "теорема о распределении простых чисел"), гораздо глубже теоремы Евклида или даже теоремы Пифагора.

Я мог бы легко увеличить число примеров, но понятие "глубины" неуловимо даже для математика, способного его распознать, и вряд ли я могу сказать ещё что-нибудь об этом понятии, что будет особенно полезным читателям-неспециалистам.

<p>18</p>
Перейти на страницу:

Похожие книги

Адмирал Советского флота
Адмирал Советского флота

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.После окончания войны судьба Н.Г. Кузнецова складывалась непросто – резкий и принципиальный характер адмирала приводил к конфликтам с высшим руководством страны. В 1947 г. он даже был снят с должности и понижен в звании, но затем восстановлен приказом И.В. Сталина. Однако уже во времена правления Н. Хрущева несгибаемый адмирал был уволен в отставку с унизительной формулировкой «без права работать во флоте».В своей книге Н.Г. Кузнецов показывает события Великой Отечественной войны от первого ее дня до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 знаменитых евреев
100 знаменитых евреев

Нет ни одной области человеческой деятельности, в которой бы евреи не проявили своих талантов. Еврейский народ подарил миру немало гениальных личностей: религиозных деятелей и мыслителей (Иисус Христос, пророк Моисей, Борух Спиноза), ученых (Альберт Эйнштейн, Лев Ландау, Густав Герц), музыкантов (Джордж Гершвин, Бенни Гудмен, Давид Ойстрах), поэтов и писателей (Айзек Азимов, Исаак Бабель, Иосиф Бродский, Шолом-Алейхем), актеров (Чарли Чаплин, Сара Бернар, Соломон Михоэлс)… А еще государственных деятелей, медиков, бизнесменов, спортсменов. Их имена знакомы каждому, но далеко не все знают, каким нелегким, тернистым путем шли они к своей цели, какой ценой достигали успеха. Недаром великий Гейне как-то заметил: «Подвиги евреев столь же мало известны миру, как их подлинное существо. Люди думают, что знают их, потому что видели их бороды, но ничего больше им не открылось, и, как в Средние века, евреи и в новое время остаются бродячей тайной». На страницах этой книги мы попробуем хотя бы слегка приоткрыть эту тайну…

Александр Павлович Ильченко , Валентина Марковна Скляренко , Ирина Анатольевна Рудычева , Татьяна Васильевна Иовлева

Биографии и Мемуары / Документальное