Читаем Апология математики, или О математике как части духовной культуры полностью

Учение о параллельных — основа геометрии Лобачевского. Чем эта геометрия отличается от обычной, евклидовой, будет сказано несколькими абзацами ниже. А пока констатируем, что Лобачевский, возможно, является единственным российским математиком, присутствующим в общественном сознании (а если брать всех математиков, а не только российских, то, скорее всего, один из двух; другой — Пифагор). Его место закреплено в поэзии: «Пусть Лобачевского кривые / Украсят города / Дугою ‹…›», «И пусть пространство Лобачевского / Летит с знамён ночного Невского», — призывает Хлебников в поэме «Ладомир». Бродский, в стихотворении «Конец прекрасной эпохи», не призывает, но констатирует:

Жить в эпоху свершений, имея возвышенный нрав,к сожалению, трудно. Красавице платье задрав,видишь то, что искал, а не новые дивные дивы.И не то чтобы здесь Лобачевского твёрдо блюдут,но раздвинутый мир должен где-то сужаться, и тут —тут конец перспективы.

Если спросить «человека с улицы», в чём состоит вклад Лобачевского в науку, в подавляющем большинстве случаев ответ будет таким: «Лобачевский доказал, что параллельные прямые пересекаются» (в более редком и изысканном варианте: «Лобачевский открыл, что параллельные прямые могут и пересечься»). Тогда надо немедленно задать второй вопрос: «А что такое параллельные прямые?» — и получить ответ «Параллельные — это такие прямые, которые лежат в одной плоскости и не пересекаются». После чего можно пытаться (с успехом или без оного) убедить своего собеседника в несовместимости между собой двух его ответов. Намёк на схождение параллельных в точку содержится уже в приведённой цитате из Бродского о сужении мира до финального «конца перспективы». Более раннее свидетельство[3] встречаем в романе В. А. Каверина «Скандалист, или Вечера на Васильевском острове». Открываем изданный в 1963 году первый том шеститомного Собрания сочинений на страницах 447 и 448. Герой романа Нагин[4] просматривает читанную ранее «книгу по логике», и вот «он внезапно наткнулся на вопросительный знак, который был поставлен на полях книги его рукою. Одна страница осталась непонятой при первом чтении курса. Вопросительный знак стоял над теорией Лобачевского о скрещении параллельных линий в пространстве». Нагин собирается писать рассказ на эту тему: «Он кусал себе ногти. „Параллели, параллели“, написал он здесь и там на листе ‹…›. „Нужно заставить их встретиться“, — начертал он крупно ‹…›». Наконец, прямое указание находим в фольклоре (а ведь буквальное значение слова folklore — "народная мудрость"):

Однажды Лобачевский думал, кутаясь в пальто:Как мир прямолинеен, видно, что-то здесь не то!И он вгляделся пристальней в безоблачную высь,И там все параллельные его пересеклись.(Сообщено Н. М. Якубовой)

Имеются и более современные свидетельства. Каждое утро по будням, между 9 и 11 часами, на «Эхе Москвы» идёт интерактивная программа «Разворот». 15 февраля 2006 года в рамках этой программы слушателям предлагалось выразить своё отношение к идее провести в Москве парад геев. Ведущий Алексей Венедиктов, беседуя с очередным слушателем, призывал его к толерантности и к признанию права каждого иметь свою собственную точку зрения. Происходил такой диалог:

«Венедиктов. Вот вы скажите, параллельные прямые пересекаются?

Слушатель. Нет.

Венедиктов. А вот у Лобачевского пересекаются, там другая система отсчёта».

Правда, как известно, у каждого своя, но истина одна. Истина состоит в том, что параллельные прямые не пересекаются даже у Лобачевского.

Природа мифологического представления об открытии Лобачевского понятна: все знают, что в его геометрии происходит что-то необычное с параллельными прямыми; а что может быть необычнее их пересечения! Поражает всё же степень распространённости этого представления. Впрочем, апологет математики вправе испытать и чувство законного удовлетворения: хоть какие-то серьёзные математические представления, пусть даже ложные, в массовом сознании присутствуют!

Перейти на страницу:

Все книги серии Новая Эврика

Похожие книги