Читаем Апология математики (сборник статей) полностью

Пример 10. Этот пример встречается и в «Началах» Евклида, и в современных школьных учебниках. Пусть дан треугольник и два его неравных угла. Требуется доказать утверждение A: против большего угла лежит бóльшая сторона.

Делаем противоположное предположение B: сторона, лежащая в нашем треугольнике против большего угла, меньше или равна стороне, лежащей против меньшего угла. Предположение B вступает в противоречие с ранее доказанной теоремой о том, что в любом треугольнике против равных сторон лежат равные углы, а если стороны неравны, то против большей стороны лежит больший угол. Значит, предположение B неверно, а верно утверждение А. Интересно, что прямое (т. е. не «от противного») доказательство теоремы A оказывается намного более сложным.

Пример 11.Иррациональность квадратного корня из двух. Арифметическое доказательство. Обозначим этот корень буквой r и начнём рассуждать от противного. Итак, число r рационально и таково, что r² = 2. Всякое рациональное число выражается дробью. Все выражающие число r дроби равны друг другу. Среди них найдётся несократимая дробь – доказательство этого простого факта составляет предмет примера 15. Пусть эта дробь есть m/n. Следовательно,

(m/n)² = 2.

Освобождаясь от знаменателя, получаем:

m² = 2n². (1)

Мы видим, что число m2 чётно. Но квадрат любого нечётного числа всегда нечётен; значит, число m чётно, m = 2k при некотором целом k. Подставляя 2k в формулу (1) вместо m, получаем:

(2k)² = 2n² (2)

и после сокращения на 2

2k² =n². (3)

Совершенно так же, как мы убедились в чётности m, убеждаемся в чётности n. Итак, оба числа m и n чётны, и дробь m/n можно сократить на 2, а ведь мы выбрали её несократимой. Полученное противоречие доказывает, что число r не может быть рациональным, оно иррационально.

Пример 12. Доказать, что уравнение x³ + x + 1 = 0 не имеет решений в рациональных числах.

Рассуждаем от противного. Предположим, что наше уравнение имеет рациональный корень. Запишем его в виде несократимой дроби p/q. Итак, p³/q³ + p/q + 1 = 0. Умножая обе части на q³, получаем равенство p³ + pq² + q³ = 0. Замечаем, что если хотя бы одно из чисел p и q нечётно, то нечётно и выражение p³ + pq³ + q³. Но этого не может быть, потому что оно равно нолю, а ноль – число чётное. Значит, числа p и q оба чётные, но этого тоже не может быть, потому что дробь p/q несократима.

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука