Чаще всего способом от противного доказывают, что объекта с заданными свойствами не существует. В самом деле, если требуется доказать, что что-то существует, то можно просто
§ 6. Принципы наибольшего и наименьшего числа и метод бесконечного спуска
Вторая формулировка принципа наименьшего числа: не существует бесконечной убывающей (т. е. такой, в которой каждый последующий член меньше предыдущего) последовательности натуральных чисел.
Эти две формулировки принципа наименьшего числа равносильны. В самом деле, если бы существовала бесконечная убывающая последовательность натуральных чисел, то среди членов этой последовательности не существовало бы наименьшего. Теперь представим себе, что удалось найти множество натуральных чисел, в котором наименьшее число отсутствует; тогда для любого элемента этого множества найдётся другой, меньший, а для него – ещё меньший и т. д., так что возникает бесконечная убывающая последовательность натуральных чисел.
Принцип наибольшего числа и обе формулировки принципа наименьшего числа с успехом применяются в доказательствах. Продемонстрируем это на примерах 13–15.