Читаем Аппараты с перемешивающими устройствами полностью

В работе [7,с.241] приводятся кривые I-θ и Е-θ (площади кривых равны единице):

I-функция характеризует время присутствия внутри аппарата, Е-функция характеризует плотность распределения времени пребывания потока в сосуде.

Для выбранного времени θ1 на кривой I-θ:

– доля частиц с временем, меньшим θ1

– доля частиц с временем, большим θ1

Доля потока с временем выхода, меньшим θ2

Доля потока с временем выхода, большим θ2

Для экспериментального определения не идеальности потока в аппарат вводят трассер [7,с.242].

Отклик измеряют на выходном патрубке.

Импульсный сигнал является δ-функцией.

С-кривой является функция изменения концентрации трассера в потоке на выходном патрубке при импульсном вводе.

F-кривой является функция изменения концентрации трассера в потоке на выходном патрубке при импульсном вводе и поддержании концентрации трассера в потоке на этом уровне.

В работе [7,с.244] приводится график F-кривой, график для δ-сигнала и С-кривой:

С помощью этих кривых производится расчет реакторов с неидеальным потоком.

Модели по кривым, учитывающим отклонение потока от идеальности не показывают структуру потока.

Структуру потока можно рассчитать методами вычислительной гидродинамики в программных пакетах и представить результат в наглядном виде на цветной диаграмме со шкалой.

Определение параметров ячеечной модели

Кафаров отмечает [19,с.118] несмотря на разработанность теории идеального смешения, реальное перемешивание такой моделью не описывается. Отклонение перемешивания от идеального устанавливают подачей индикатора (см. выше) на вход в аппарат в установившемся состоянии процесса в момент времени t0 в количестве C0. В этот же момент замеряется концентрация индикатора на выходном патрубке аппарата:

Кафаров указывает, что доля индикатора, вышедшая за время (t-t0) записывается в виде функции от числа аппаратов [16,с.118]:

n – число ячеек полного перемешивания,

– среднее время пребывания индикатора в аппарате.

Полученное по приведенной формуле Кафарова расчетное значение С(t) сравнивается с экспериментальной величиной С для момента времени t – для оценки числа ячеек полного смешения, которое соответствует реальным условиям перемешивания.

Кафаров [19,с.119] приводит блок-схему нахождения числа ячеек:

Кафаров приводит программу [19,с.120], записанную на одном из языков программирования. В Вычисление выполняется в виде процедуры, которая запускается из основного программного кода. В первоначальном приближении число ячеек задается равным 1, затем если Сnтеор < Сэкс, число ячеек увеличивают на 1 и повторяют вычисление. Если используется несколько экспериментальных точек определения концентрации индикатора, программа может выдавать усредненное значение. Окончание расчета происходит при сопоставлении суммы квадратов отклонений расчетной и экспериментальной кривых.

__

Пример технологического расчета аппарата с мешалкой

При технологическом расчете аппарата с мешалкой определяются его геометрические размеры и расход теплоносителя.

Расчетная схема аппарата по данным Голованчикова А.Б. [24]:

Существует «пуклеванная» конструкция рубашки аппарата, имеющая минимальную толщину стенки и максимальную жесткость за счет выполнения конусных вытяжек в рубашке и приварке отверстий в вытяжках к обечайке корпуса аппарата. В работе А.Г. Касаткина [20,с.335] такая рубашка называется рубашкой с анкерными связями:

Внутри пуклеванной рубашки происходит перемешивание потока при обтекании конусных вытяжек рубашки и за счет этого интенсифицируется теплообмен. Недостаток, характерный для коаксиальных рубашек отсутствует. Одним из преимуществ пуклеванной рубашки является высокая прочность и жесткость и за счет этого применение минимально тонкого листа для изготовления.

Прочностной расчет такой рубашки выполняется методом конечных элементов в специальной программе, например ANSYS. Как правило, толщина рубашки составляет 2 и более мм.

Существуют змеевиковые теплообменные устройства. Змеевик может быть помещен внутри аппарата или навит и приварен снаружи к обечайке, как показано в работе Касаткина [20,с.335]:

В этом случае выполняется расчет змеевикового теплового устройства.

__

Ниже приведем технологический расчет аппарата с мешалкой с коаксиальной рубашкой. Приводимый расчет основан на методиках А.Б. Голованчикова [23], [24], (а также с применением образцов расчета [20], [25]), в которых скомпилированы гидравлические и тепловые расчеты элементов для одного объекта аппарата с рубашкой.

По модели реактора идеального смешения определяются [23], [24]:

– концентрация непрореагировавшего сырья (χ – степень превращения):

– определяется скорость реакции:

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки